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PART A
INTRODUCTION TO TIME SERIES

Kechagias Stefanos (UNC) May 23, 2013 3/45



Introduction to time series

@ Time series is a set of observations x;, each one being recorded at a
specified time t.

@ Discrete time series: The set Ty of times at which observations are
made is discrete.

Example (Population in the U.S.)

o ‘ t Xt

1790 3,929,214
1800 5,308,483
1810 7,239,881
1820 9,638,453

Figure 1.2. Population of the U.S.A. at ten-year intervals, 1790~1980 (U.S. Bureau of

e o, 1980 226,545,805
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Mathematical model

Question: What mathematical model should we use in time series
analysis?
@ We can think of each observation x; as a realized value of a certain
random variable X;.

@ Then the time series {x;, t € Tp} is the realization of the family of
random variables {X;,t € Tp}.

Definition (Stochastic Process)

A stochastic process is a family of random variables {X;,t € T} defined
on a probability space (2, F, P).

@ We will consider T = Z.
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Weak Stationarity

Definition (Stationarity)

A stochastic process {X;}+cz is (weakly or second-order) stationary if for
any t,s € Z,

o EIX(t)> < o0

o EX(t) = EX(0)

e Cov(X(t), X(s)) = Cov(X(t —s),X(0))

The time difference t — s is called time-lag.

Time domain perspective
Consider a (weakly) stationary time series {X;}¢cz. In the time domain,
one focuses on the functions

7)((/7) = COV(Xh, Xo) = COV(XH_h,Xt), forall t,heZ
x(h)
x(0)°
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ACV, ACVF

called autocovariance function (ACVF) and autocorrelation function
(ACF). ACVF and ACF are measures of dependence in time series.

Sample counterparts of ACVF and ACF are the functions

p N ()
x(h) =+ ; (Xer ) = X)Kegn = X), - Px(h) = :;);(0)’ |h[ < N—1.

Basic Properties
Q (Symmetry) px(h) = px(—h), he Z
@ (Range) [px(h)| <1, heZ

@ (Interpretation) px(h) close to -1, 0 and 1 correspond to strong
negative, weak and strong positive correlation, respectively, in time
series at lag h.
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Time series examples

Example 1. (White Noise.) A time series X, = Z,,n € Z is called White
Noise, denoted WN(0, 02), if EZ, = 0 and

o2, ifh=0, 1, ifh=0,
'VZ(”)_{O, if h 0, Z(h)_{o, if h 0.

Example 2. (MA(1)). A time series is called a Moving Average of order 1
(MA(1)) if it is given by
Xn=2n+0Z,-1, nel,

where Z, ~ WN(0, 02). Observe that,

2(1+62), h=0,
’yx(h) =EX, Xy = ]E(ZhjLHZh_l)(ZojLGZ,l) = 0'29, h=1,
0, h> 2
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Time series examples

and hence
1, h=0,
pX(h) - ﬁa h= 17
0, h>2.

Example 3. (AR(1)). A (weakly) stationary time series {X,}nez is called
Autoregressive of order 1 (AR(1)) if it satisfies the AR(1) equation

Xn=¢Xn-1+ 2y, nel,

where Z, ~ WN(0,0?). To see that AR(1) time series exists, suppose
|¢| < 1 and notice that,

Xo = ¢*Xoo+ 0Zn 1+ Z,

= 0" Xo-m + " 2y oyt A Za= Y " Znem

m=0

The time series is well defined in the L?(£2)-sense because,
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Time series examples

np 2 n2
E ( Z g[)’"Z,,m> = Z #*Mo? 0, as ny,m — 00,

m=ni m=ny

for |¢| < 1. Also we can easily calculate,

, o
1— g2’
Example 4. (ARMA(p,q)) A (weakly) stationary time series {X,}ncz is

called Autoregressive moving average of orders p and g (ARMA(p, q)) if it
satisfies the equation

x(h) =0 px(h) = ¢l

Xn— 1 Xp1— ... — (pr,,,p =Zy+ 02y 1+ ...+ qun,q,

where Z, ~ WN(0,0?). It is convenient to express the conditions in terms
of the so-called backshift operator B, defined as

B¥X, = X,_x, B°=1,neZ.
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Spectral domain

With this notation, the ARMA(p, q) equation becomes
#(B)Xn =0(B)Z,,

where

P(2)=1—g1z— ... —¢ppzP, 0(2)=1+4601z+ ...+ 0427
are the so-called characteristic polynomials.

Spectral domain perspective
In the spectral domain the focus is on the function

1 & .
fx()\) = Z Z eflh)"}/x(h), NS (—71',71'],

h=—00

called spectral density. Observe that fx is well defined pointwise when
x € LNZ).
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Spectral domain

Example 1. (White Noise cont'd). If Z, ~ WN(0,0?) then

0_2

Z7
Example 2. (AR(1) cont'd). If {X,}nez is AR(1) time series with |¢] < 1
and yx () = 026" /(1 — &%), then

fx(A) = A€ (—m,m.

o2

f ()\) _ ( + = —/h/\ lh)\ >
* 2m(1 - ¢?) ;

_ 0_2 ¢efl)\ ¢ l)\
- 2(1-¢?) (” T—gen " 1—¢e'“>

o2 1
27 |1 — ge= A2
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Spectral domain

Basic properties
Q@ Symmetry fx(\) = fx(—A)
@ Non-negative fx(\) > 0. For
© Inverse discrete Fourier transform

yx(h) = / i e (\)dA.

A sample counterpart to the spectral density is defined by

N

ZX e—inA
n

n=1

with the first relation holding only at the so-called Fourier frequencies

A:Ak:% with k:—[’\’;l][g’]

2
e

or

1 ~ i 1
or 2 x(me ™ = o
|h|<N
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Spectral domain

Ix n is known as the periodogram and has the following properties:

1. (Computational speed). Ix ny(Ak) can be computed by fast Fourier
Transform (FFT) in O(NlogN) steps, supposing N can be factored
out in many factors.

2. (Statistical properties). Ix ny(X) is not a consistent estimator for
27f (), but is asymptotically unbiased. the periodogram needs to be
smoothed out to become consistent.
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PART B
LONG-RANGE DEPENDENCE
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Slowly varying functions

Definition 1: A function L is slowly varying at infinity if it is positive and,
for any a > 0,

m L(au) _
u—oo L(u)

A function L is slowly varying at zero if the function L(1/u) is slowly
varying at infinity.

Example: L(u) = log(u) is slowly varying at infinity.

We are now ready to introduce time series with long-range dependence.
these will involve a parameter

d€(0,1/2),

and a slowly varying function L.
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Definitions of long-range dependence

d €(0,1/2), Ly, L, slowly varying at infinity, L3 slowly varying at zero.
Condition . X, = p+ > 22 o Yk€n—k with {€n}nez ~ WN and

VUi = Li(k)k?™L, as k — oo.
Condition II.
v(k) = Ly(k)k?7L,  as k — .

Condition III.

> (k) = oo

k=—o00

Condition V.
f(\) = L3(M)A729, as A — 0.

In statistical inference, all slowly varying function are replaced by
constants (in the asymptotic sense, e.g. Lo(u) ~ c3).
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Definitions of long-range depdendence

Definition 2: A second-order stationary time series X = { X} ez is called
long-range dependent (LRD, in short) if one of the non-equivalent
conditions 11V above holds. The parameterd € (0,1/2) is called a
long-range dependence (LRD) parameter.

Other names: Long memory, strongly dependent, 1/f(1/)) noise, colored
noise, burstiness, ...

Definition 3: A second-order stationary time series X = {X,} ez is called
short-range dependent (SRD, in short) if

> (k)| < .

k=—o00

Other names: short memory, weakly dependent, ...
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Some real examples of LRD series
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Some real examples of LRD series

Nile river minima at Hoda gauge, 622 - 1251AD
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Some real examples of LRD series

x 10" Linearly detrended number of bytes per lsc arriving to UNC on April 09, 2002, 1PM
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Some real examples of LRD series

x 10" Linearly detrended number of bytes per lsc arriving to UNC on April 9, 2002, 1PM
T T T

L L
o] 1000 2000 3000 4000 5000 6000 7000
t

x 10 Periodogram
B T T T T T T

log A
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Cond. IV = Il

As mentioned earlier Conditions I-IV are not equivalent in general. We will
examine briefly how they are related.

Fact: If >°77 __ |v(k)| < oo, then the series X = {X,} ez has a
continuous spectral density f(\) = % Y e (k).

If cond. Ill fails, that is, Zzo__oo |7(k)| < oo, the fact above implies that

f(\) is continuous and f(0) = 2= 3°2° (k) < co. But by cond. IV,
limy_s0f(\) = limy_0L3(A)A™2¢ = co. Hence a contradiction, showing
that cond. IV implies IlI.

Definition: A slowly varying function L on [0, 00) is called
quasi-monotone if it is of bounded variation on any compact interval of
[0,00) and if for all § > 0,

/oo u°|dL(u)] = O(x°L(x)), as x — oco.
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Comparing cond. Il and IV

Cond. IV = Il: Informally,

v(k) = / e* A F(N)dA = / e* A 3(A)AT29d\

—T —T

—k2d 1L )/ IZ’ | —2d 3((|[1<))dz
k

1
Nk2d lL (k)/ IZ‘Z’ 2ddz
—0o0

1 1-2d
= k2d71L3(E)2 COS(T(-(Q)
and hence Ly(u) ~ L3(1/u)2 COS(M)F(l — 2d). These calculations
can be justified assuming that L3 is quasi-monotone. Otherwise the result
is not in general even in the case L3(k) ~ c3.

(1 - 2d).
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Comparing cond. Il and IV

Cond. Il = IV: Informally,

o

]. —i 1 > _,' —
) =5 ek = > e (kK

k=—oc0 k=—00

_ A2, (i\)z1 _f: e—ikALL(z’a))(kA)% 1y

1.1 [ _.
~ AT 2dL (A)ZW/ e IZZZd—le

1.1
/\)2 "(
thus L3(\) ~ Lo(3)2T(2d) cos(nd). These calculations can be justified

assuming that L is quasi-monotone. Otherwise the result is not in general
even in the case Ly(k) ~ .

= A2 L( 2d) cos(rd),
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Some real examples of LRD series

Il = I = 1

N

IV

"= supposes that the slowly varying function is quasi-monotone
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FARIMA(0, d, 0)

Example : If d is a non negative integer, then X; is said to be an
ARIMA(0, d,0) process if

(I - B)¥X, = Z,,

where Z, ~ WN(0,02) and B is the backshift operator. In simple cases of
d=1,2,.., this equation is:

d=1: (I -B)Xo=Xy— Xn_1 =2,
d=2: (I - B)2Xn = (Xn — Xno1) — (X1 — Xn2) = Z,
and so on when d > 3.

Remark: In many applications we want to difference the observed time
series in order to achieve approximate stationarity. However even though
differencing might seem appropriate, taking the first or second difference
may be too strong!
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FARIMA(0, d, 0)

Example cont’d: For other values of d we would like to interpret the
solution to the ARIMA(0, d,0) as

o0 o0
Xo=(1-B) 92, =) bBZ,=> bZ,j,
j=0 j=0

where bJ'-s are the coefficients in the Taylor expansion of

1 1 2
P RPN G IO GRS R

& (L k-1+d _ r(j+d A
_J'0<k1:[1 k >ZJ Zr(f szj

The time series is well defined when ZOO b2

< oo which depends on the
behavior of b; as j — oo.
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FARIMA(0, d, 0)

Example cont’d: By Stirling’s formula
F(p) ~ vV2re=(P~1(p —1)P~1/2 as p — oo, we have

TG+a) jot

T TG+ ) @)y * T

Then the time series is well defined if 2(d —1)+1=2d —1<0or
d<1)2.

Definition: The time series X, = (I — B)™9Z, = > 20 bjZn—j is called
FARIMA(0, d, 0) when d < 1/2.

Since b; ~ f157 a FARIMA(0, d, 0) series is LRD when 0 < d < 1/2, in the
sense of condition | and hence |l and lll.
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FARIMA(0, d, 0)

Example cont’d:
Fact 1: FARIMA(O, d, 0) series has spectral density

or 2 27

2 —2d 2 ) 2
FO) = 2 <2S|n)\> :"—|1—e—“|—2d~;—|x\—2d as A — 0.
T

Basic idea: A series X, =

j—0 bjZn—j has spectral density

2

f(A) = Zbe A

Here, 372, bjemi* = (1 — e=A)7d.
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FARIMA(0, d, 0)

Fact 2: FARIMA(O, d, 0) series has autocovariances

~1)kr(1 - — 2d)sin(m
v(k) = o? F(l(—lg')ﬁ((j:[l— id_) 0~ o? r{ 2C7lr) ( d)kzd_l, as k — oo.

Basic idea:

v(k) = / ! e* A F(N)dA = ‘2’; /0 7 cos(kA)(2sin(\/2))29d\

™

and the formula for the last integral is known.

Kechagias Stefanos (UNC) Long-range dependence May 23, 2013 31/ 45



FARIMA(0, d, 0)

EARIMA(O,d,0) with d = —0.6

FARIMA(0,d,0) with d = —0.3

o 200 400 600 800 1000

FARIMA(D,d,0) withd = ©

zoo 400 600 ao0 1000

FARIMA(0,d,0) with d = 0.4

200 a00 800 800 1000
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zZ00 400 s00 800 1000

FARIMA(0,d,0) with d = 0.2

zoo 400 s00 Bso0 1000

FARIMA(0,d,0) with d = 1.2

200 400 s00 800 1000
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Long Memory in Volatility

Long memory stochastic volatility model (LMSV).
Consider the latent variable model for the return series r;
= otVy,

where v; is an independent identically distributed series with mean zero
and finite variance and o2 is given by,

or = exp(ht/2),

where h; is a Gaussian long memory series independent of v;.

Using the moment generating function of the Gaussian distribution it can
be shown for the LMSV model that

p2(i) ~ G2 as j— oo
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PART C
MULTIVARIATE LRD
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Multivariate LRD

We focus here on vector-valued (RP-valued), second order stationary times
series X = {Xp}nez-

@ Autocovariance matrix function:
v(h) = (Y (h)j k=1,..p = EXo X} —EXEX;, heZ
@ Spectral density matrix function (if it exists)
f(A) = (fk(N)jk=1,.p» A€ (—m, 7).

It satisfies

/ e F(NdA = ~(n), neZ.
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Mutlivariate LRD

Remark 1: The cross covariances 7jx(n) may not be equal to
vjk(—n) when j # k. Therefore in contrast to the univariate case, it is
not true in general that

V(n) =~(=n), neZ (1)

If (1) holds, the time series X is called time reversible.

Remark 2: Since (1) may not hold, f(\) is in general, complex
valued. f(\) is Hermitian symmetric, non negative definite and
satisfies f(—\) = f(\), A € [-m, 7).
We are now ready to extend Conditions |l and IV to the multivariate case.
Let
D =diag(dy,...,dp) with d; €(0,1/2),j=1,...,p.
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Multivariate LRD

Condition ll-v. The autocovariance matrix function of the time series
X = {Xn}nez satisfies:

’Y(") _ nD7(1/2)IL2(n)nD7(1/2)I’ (2)
where Ly is an RP*P-valued function satisfying Lp(u) ~ R, as u — +o0,
for some p x p matrix R. Equivalently we can write,

n(dj—i-dk)—l (dj-&—dk)—l,

Yjk(n) = Lo jk(n) ~ Rjn as n— oo.

Condition IV-v. The spectral density matrix function satisfies
F(A) = A PLs(A)A", (3)

where L3 is a CP*P-valued, Hermitian symmetric, non-negative definite
matrix function satisfying L3(\) ~ G, as A — 0, for some p x p,
Hermitian symmetric, non-negative definite matrix G. Equivalently,

fa(\) = L3Jk()\))\*(dj+dk) ~ ij)\*(dﬂrdk) —- gjkei@k/\*(dj'+dk) as A—0,
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Multivariate LRD

where gjx € R and ¢ € [—7, 7).

Remarks:
@ The individual component series {X,J;},,GZ, j=1,...,p of a
multivariate LRD series are LRD with parameters d;, j =1,...,p.
@ Note from (3) that f(\) is Hermitian, non negative definite. The
entries ¢, are referred to as phase parameters.

© We supposed for simplicity that all slowly varying functions behave as
constants.

© The squared coherence function Hj?k()\) = |fuc(N) 2/ (F;(N) ik (X))
satisfies 0 < szk()\) < 1. As A\ = 0, this translates into

0< lim |G PA—20dHd) Gy

= <1 4
A=0 GiAT2D Gy A2 GGy ~ )

and also explains why the choice of A~(41d) is natural for the
cross-spectral density fix ().
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Comparing cond. llI-v and IV-v

@ Suppose that Lj j are quasi-monotone. Then cond Il-v implies cond
IV-v with Gy = gjke’¢fk given by

Rix — Ry; s

$jx = — arctan {M tan(=(d; + dk))},

[(dj + di)(Rik + Rij) cos(5(dj + di))
27 cos(pjk)

@ Suppose that $tL3 jx, SL3 jx are quasi-monotone. Then cond IV-v
implies cond Il-v with

Ejk =

Ry = 2T (1= (dj+ di)) { RGje sin( 7 (d) + k) — S Gy cos( 5 (d) + de)) }
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Linear Representation

Suppose that the series X, has a linear representation of the form
o0
Xn = Z men—ma
m=—o0
where {V; = (Ym jk)j k=1,....p} mez, a sequence of real matrices such that
di—1
Umgjk = Lix(m)|m|%~,

where L(m) = (ij(m))j,kzl,...,p

is an RP*P-valued function satisfying
L(m)~AT as m-—oco, and L(m)~A" as m— —o0,
for some p x p real matrices AT = (aj,:)j,kzlw,p, A" = (aj_k)j,kzlw,p.

Then X, is LRD.
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Consider the series -

Xn = ZO \Umanma

where {Zp}nez, and W, as earlier. Then the phase parameters appearing
in the (j, k) element of the spectral density matrix of X, have the form

bk = —(dj — dk)3

Question: What behavior should | consider for W, to get a causal
represenation?

Linear combinations of

cf;;b =m? cos(2rm?) and sf,,’b =mb sin(2rm?)  (7)
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FARIMA(0,D,0)

o My = (mf). M_ = (mj) € RP*P.

o {Z,}nez such that EZ, = 0 and EZ,Z!, = 02/ if n=m, and = 0 if
n# m.
Define a multivariate FARIMA(O, D, 0) series as

Xo=(—-B)yPm z, + 1-B Y)Y PMm_Z,.
For the component wise spectral density | have

Fa(A) ~ A~ (@Hd) - as A — 0,

where
0’2 . T . s . s . s
Gk = o (e*’(df*dk)iAl + e d=d)3 Ay 4 l(d=d)3 Ay e’("f*dk)?Az;)
T
_ NP ot NPt NPt _
and Ay = D0y My My, Ax =Dy MMy, Az =300 mymyq, Ag =

p — —
Dot M My
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Lots and Lots of Fun Stuff

@ Self similar processes
@ Issing model in two dimensions

@ Infinite sourse Poisson model with Heavy tails
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Thank you!
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