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INTRODUCTION TO TIME SERIES

Kechagias Stefanos (UNC) Long-range dependence May 23, 2013 3 / 45



Introduction to time series

Time series is a set of observations xt , each one being recorded at a
specified time t.

Discrete time series: The set T0 of times at which observations are
made is discrete.

Example (Population in the U.S.)

t xt
1790 3,929,214
1800 5,308,483
1810 7,239,881
1820 9,638,453

...
...

1980 226,545,805
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Mathematical model

Question: What mathematical model should we use in time series
analysis?

We can think of each observation xt as a realized value of a certain
random variable Xt .

Then the time series {xt , t ∈ T0} is the realization of the family of
random variables {Xt , t ∈ T0}.

Definition (Stochastic Process)

A stochastic process is a family of random variables {Xt , t ∈ T} defined
on a probability space (Ω,F ,P).

We will consider T = Z.
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Weak Stationarity

Definition (Stationarity)

A stochastic process {Xt}t∈Z is (weakly or second-order) stationary if for
any t, s ∈ Z,

E|X (t)|2 <∞
EX (t) = EX (0)

Cov(X (t),X (s)) = Cov(X (t − s),X (0))

The time difference t − s is called time-lag.

Time domain perspective
Consider a (weakly) stationary time series {Xt}t∈Z. In the time domain,
one focuses on the functions

γX (h) = Cov(Xh,X0) = Cov(Xt+h,Xt), for all t, h ∈ Z

ρX (h) =
γX (h)

γX (0)
,
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ACV, ACVF

called autocovariance function (ACVF) and autocorrelation function
(ACF). ACVF and ACF are measures of dependence in time series.

Sample counterparts of ACVF and ACF are the functions

γ̂X (h) =
1

N

N−|h|∑
t=1

(Xt+|h|−X )(Xt+|h|−X ), ρ̂X (h) =
γX (h)

γX (0)
, |h| ≤ N−1.

Basic Properties

1 (Symmetry) ρX (h) = ρX (−h), h ∈ Z
2 (Range) |ρX (h)| ≤ 1, h ∈ Z
3 (Interpretation) ρX (h) close to -1, 0 and 1 correspond to strong

negative, weak and strong positive correlation, respectively, in time
series at lag h.
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Time series examples

Example 1. (White Noise.) A time series Xn = Zn, n ∈ Z is called White
Noise, denoted WN(0, σ2), if EZn = 0 and

γZ (h) =

{
σ2, if h = 0,
0, if h 6= 0,

ρZ (h) =

{
1, if h = 0,
0, if h 6= 0.

Example 2. (MA(1)). A time series is called a Moving Average of order 1
(MA(1)) if it is given by

Xn = Zn + θZn−1, n ∈ Z,

where Zn ∼WN(0, σ2). Observe that,

γX (h) = EXhX0 = E(Zh+θZh−1)(Z0+θZ−1) =


σ2(1 + θ2), h = 0,
σ2θ, h = 1,
0, h ≥ 2,
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Time series examples

and hence

ρX (h) =


1, h = 0,
θ

1+θ2 , h = 1,

0, h ≥ 2.

Example 3. (AR(1)). A (weakly) stationary time series {Xn}n∈Z is called

Autoregressive of order 1 (AR(1)) if it satisfies the AR(1) equation

Xn = φXn−1 + Zn, n ∈ Z,

where Zn ∼WN(0, σ2). To see that AR(1) time series exists, suppose
|φ| < 1 and notice that,

Xn = φ2Xn−2 + φZn−1 + Zn

= φmXn−m + φm−1Zn−(m−1) + . . .+ Zn =
∞∑

m=0

φmZn−m.

The time series is well defined in the L2(Ω)-sense because,
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Time series examples

E

(
n2∑

m=n1

φmZn−m

)2

=

n2∑
m=n1

φ2mσ2 → 0, as n1, n2 →∞,

for |φ| < 1. Also we can easily calculate,

γX (h) = σ2 φ|h|

1− φ2
, ρX (h) = φ|h|.

Example 4. (ARMA(p,q)) A (weakly) stationary time series {Xn}n∈Z is
called Autoregressive moving average of orders p and q (ARMA(p, q)) if it
satisfies the equation

Xn − φ1Xn−1 − . . .− φpXn−p = Zn + θ1Zn−1 + . . .+ θqZn−q,

where Zn ∼WN(0, σ2). It is convenient to express the conditions in terms
of the so-called backshift operator B, defined as

BkXn = Xn−k , B0 = I , n ∈ Z.
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Spectral domain

With this notation, the ARMA(p, q) equation becomes

φ(B)Xn = θ(B)Zn,

where

φ(z) = 1− φ1z − . . .− φpzp, θ(z) = 1 + θ1z + . . .+ θqz
q

are the so-called characteristic polynomials.

Spectral domain perspective
In the spectral domain the focus is on the function

fX (λ) =
1

2π

∞∑
h=−∞

e−ihλγX (h), λ ∈ (−π, π],

called spectral density. Observe that fX is well defined pointwise when
γX ∈ L1(Z).
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Spectral domain

Example 1. (White Noise cont’d). If Zn ∼WN(0, σ2) then

fX (λ) =
σ2

2π
, λ ∈ (−π, π].

Example 2. (AR(1) cont’d). If {Xn}n∈Z is AR(1) time series with |φ| < 1
and γX (h) = σ2φh/(1− φ2), then

fX (λ) =
σ2

2π(1− φ2)

(
1 +

∞∑
h=1

(e−ihλ + e ihλ)φh

)

=
σ2

2π(1− φ2)

(
1 +

φe−iλ

1− φe−iλ
+

φe iλ

1− φe iλ

)
=

σ2

2π

1

|1− φe−iλ|2
.
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Spectral domain

Basic properties
1 Symmetry fX (λ) = fX (−λ)

2 Non-negative fX (λ) ≥ 0. For

3 Inverse discrete Fourier transform

γX (h) =

∫ π

−π
e ihλfX (λ)dλ.

A sample counterpart to the spectral density is defined by

1

2π

∑
|h|<N

γ̂X (h)e−ihλ =
1

2π

∣∣∣∣∣
N∑

n=1

Xne
−inλ

∣∣∣∣∣
2

=:
IX ,N(λ)

2π
,

with the first relation holding only at the so-called Fourier frequencies

λ = λk =
2πk

N
with k = −

[
N − 1

2

]
, . . . ,

[
N

2

]
.
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Spectral domain

IX ,N is known as the periodogram and has the following properties:

1. (Computational speed). IX ,N(λk) can be computed by fast Fourier
Transform (FFT) in O(N logN) steps, supposing N can be factored
out in many factors.

2. (Statistical properties). IX ,N(λ) is not a consistent estimator for
2πf (λ), but is asymptotically unbiased. the periodogram needs to be
smoothed out to become consistent.
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PART B
LONG-RANGE DEPENDENCE
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Slowly varying functions

Definition 1: A function L is slowly varying at infinity if it is positive and,
for any a > 0,

lim
u→∞

L(au)

L(u)
= 1.

A function L is slowly varying at zero if the function L(1/u) is slowly
varying at infinity.

Example: L(u) = log(u) is slowly varying at infinity.

We are now ready to introduce time series with long-range dependence.
these will involve a parameter

d ∈ (0, 1/2),

and a slowly varying function L.
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Definitions of long-range dependence

d ∈ (0, 1/2), L1, L2 slowly varying at infinity, L3 slowly varying at zero.

Condition I. Xn = µ+
∑∞

k=0 ψkεn−k with {εn}n∈Z ∼WN and

ψk = L1(k)kd−1, as k →∞.

Condition II.

γ(k) = L2(k)k2d−1, as k →∞.

Condition III.
∞∑

k=−∞
|γ(k)| =∞.

Condition IV.

f (λ) = L3(λ)λ−2d , as λ→ 0.

In statistical inference, all slowly varying function are replaced by
constants (in the asymptotic sense, e.g. L2(u) ∼ c2).
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Definitions of long-range depdendence

Definition 2: A second-order stationary time series X = {Xn}n∈Z is called
long-range dependent (LRD, in short) if one of the non-equivalent
conditions IIV above holds. The parameterd ∈ (0, 1/2) is called a
long-range dependence (LRD) parameter.

Other names: Long memory, strongly dependent, 1/f (1/λ) noise, colored
noise, burstiness, ...

Definition 3: A second-order stationary time series X = {Xn}n∈Z is called
short-range dependent (SRD, in short) if

∞∑
k=−∞

|γ(k)| <∞.

Other names: short memory, weakly dependent, ...
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Some real examples of LRD series
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Some real examples of LRD series
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Some real examples of LRD series
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Some real examples of LRD series
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Cond. IV ⇒ III

As mentioned earlier Conditions I-IV are not equivalent in general. We will
examine briefly how they are related.

Fact: If
∑∞

k=−∞ |γ(k)| <∞, then the series X = {Xn}n∈Z has a

continuous spectral density f (λ) = 1
2π

∑∞
k=−∞ e−ikλγ(k).

If cond. III fails, that is,
∑∞

k=−∞ |γ(k)| <∞, the fact above implies that

f (λ) is continuous and f (0) = 1
2π

∑∞
k=−∞ γ(k) <∞. But by cond. IV,

limλ→0f (λ) = limλ→0L3(λ)λ−2d =∞. Hence a contradiction, showing
that cond. IV implies III.

Definition: A slowly varying function L on [0,∞) is called
quasi-monotone if it is of bounded variation on any compact interval of
[0,∞) and if for all δ > 0,∫ ∞

x
u−δ|dL(u)| = O(x−δL(x)), as x →∞.
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Comparing cond. II and IV

Cond. IV ⇒ II: Informally,

γ(k) =

∫ π

−π
e ikλf (λ)dλ =

∫ π

−π
e ikλL3(λ)λ−2ddλ

= k2d−1L3(
1

k
)

∫ kπ

−kπ
e iz |z |−2d L3( |z|k )

L3( 1
k )

dz

≈ k2d−1L3(
1

k
)

∫ ∞
−∞

e iz |z |−2ddz

= k2d−1L3(
1

k
)2 cos(

π(1− 2d)

2
)Γ(1− 2d).

and hence L2(u) ∼ L3(1/u)2 cos(π(1−2d)
2 )Γ(1− 2d). These calculations

can be justified assuming that L3 is quasi-monotone. Otherwise the result
is not in general even in the case L3(k) ∼ c3.
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Comparing cond. II and IV

Cond. II ⇒ IV: Informally,

f (λ) =
1

2π

∞∑
k=−∞

e−ikλγ(k) =
1

2π

∞∑
k=−∞

e−ikλL2(k)k2d−1

= λ−2dL2(
1

λ
)

1

2π

∞∑
k=−∞

e−ikλ
L2(kλ 1

λ)

L2( 1
λ)

(kλ)2d−1λ

≈ λ−2dL2(
1

λ
)

1

2π

∫ ∞
−∞

e−izz2d−1dz

= λ−2dL2(
1

λ
)

1

2π
Γ(2d) cos(πd),

thus L3(λ) ∼ L2( 1
λ) 1

πΓ(2d) cos(πd). These calculations can be justified
assuming that L2 is quasi-monotone. Otherwise the result is not in general
even in the case L2(k) ∼ c2.
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Some real examples of LRD series
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FARIMA(0, d , 0)

Example : If d is a non negative integer, then Xt is said to be an
ARIMA(0, d , 0) process if

(I − B)dXn = Zn,

where Zn ∼WN(0, σ2) and B is the backshift operator. In simple cases of
d=1,2,.., this equation is:

d = 1 : (I − B)Xn = Xn − Xn−1 = Zn

d = 2 : (I − B)2Xn = (Xn − Xn−1)− (Xn−1 − Xn−2) = Zn

and so on when d ≥ 3.

Remark: In many applications we want to difference the observed time
series in order to achieve approximate stationarity. However even though
differencing might seem appropriate, taking the first or second difference
may be too strong!
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FARIMA(0, d , 0)

Example cont’d: For other values of d we would like to interpret the
solution to the ARIMA(0, d , 0) as

Xn = (I − B)−dZn =
∞∑
j=0

bjB
jZn =

∞∑
j=0

bjZn−j ,

where b′js are the coefficients in the Taylor expansion of

(1− z)−d = 1 + dz +
d(d + 1)

2!
z2 +

d(d + 1)(d + 2)

3!
z3 + . . .

=
∞∑
j=0

(
j∏

k=1

k − 1 + d

k

)
z j =

∞∑
j=0

Γ(j + d)

Γ(j)Γ(d)
zd =:

∞∑
j=0

bjz
j .

The time series is well defined when
∑∞

j=0 b
2
j <∞ which depends on the

behavior of bj as j →∞.
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FARIMA(0, d , 0)

Example cont’d: By Stirling’s formula
Γ(p) ∼

√
2πe−(p−1)(p − 1)p−1/2, as p →∞, we have

bj =
Γ(j + a)

Γ(j + b)
∼ jd−1

Γ(d)
, as j →∞.

Then the time series is well defined if 2(d − 1) + 1 = 2d − 1 < 0 or
d < 1/2.

Definition: The time series Xn = (I − B)−dZn =
∑∞

j=0 bjZn−j is called
FARIMA(0, d , 0) when d < 1/2.

Since bj ∼ jd−1

Γ(d) a FARIMA(0, d , 0) series is LRD when 0 < d < 1/2, in the
sense of condition I and hence II and III.
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FARIMA(0, d , 0)

Example cont’d:

Fact 1: FARIMA(0, d , 0) series has spectral density

f (λ) =
σ2

2π

(
2 sin

λ

2

)−2d

=
σ2

2π
|1− e−iλ|−2d ∼ σ2

2π
|λ|−2d as λ→ 0.

Basic idea: A series Xn =
∑∞

j=0 bjZn−j has spectral density

f (λ) =
σ2

2π

∣∣∣∣∣∣
∞∑
j=0

bje
−ijλ

∣∣∣∣∣∣
2

Here,
∑∞

j=0 bje
−ijλ = (1− e−iλ)−d .
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FARIMA(0, d , 0)

Fact 2: FARIMA(0, d , 0) series has autocovariances

γ(k) = σ2 (−1)kΓ(1− 2d)

Γ(1− d)Γ(1− k − d)
∼ σ2 Γ(1− 2d)sin(πd)

π
k2d−1, as k →∞.

Basic idea:

γ(k) =

∫ π

−π
e ikλf (λ)dλ =

σ2

2π

∫ 2π

0
cos(kλ)(2 sin(λ/2))−2ddλ

and the formula for the last integral is known.
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FARIMA(0, d , 0)
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Long Memory in Volatility

Long memory stochastic volatility model (LMSV).

Consider the latent variable model for the return series rt

rt = σtvt ,

where vt is an independent identically distributed series with mean zero
and finite variance and σ2

t is given by,

σt = exp(ht/2),

where ht is a Gaussian long memory series independent of vt .

Using the moment generating function of the Gaussian distribution it can
be shown for the LMSV model that

ρr2
t
(j) ∼ Cj2d−1, as j →∞.
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PART C
MULTIVARIATE LRD
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Multivariate LRD

We focus here on vector-valued (Rp-valued), second order stationary times
series X = {Xn}n∈Z.

Autocovariance matrix function:

γ(h) = (γjk(h))j ,k=1,...,p = EX0X
′
h − EX0EX ′h, h ∈ Z

Spectral density matrix function (if it exists)

f (λ) = (fjk(λ))j ,k=1,..,p, λ ∈ (−π, π].

It satisfies ∫ π

−π
e inλf (λ)dλ = γ(n), n ∈ Z.
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Mutlivariate LRD

Remark 1: The cross covariances γjk(n) may not be equal to
γjk(−n) when j 6= k . Therefore in contrast to the univariate case, it is
not true in general that

γ(n) = γ(−n), n ∈ Z. (1)

If (1) holds, the time series X is called time reversible.

Remark 2: Since (1) may not hold, f (λ) is in general, complex
valued. f (λ) is Hermitian symmetric, non negative definite and
satisfies f (−λ) = f (λ), λ ∈ [−π, π).

We are now ready to extend Conditions II and IV to the multivariate case.
Let

D = diag(d1, . . . , dp) with dj ∈ (0, 1/2), j = 1, . . . , p.
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Multivariate LRD

Condition II-v. The autocovariance matrix function of the time series
X = {Xn}n∈Z satisfies:

γ(n) = nD−(1/2)IL2(n)nD−(1/2)I , (2)

where L2 is an Rp×p-valued function satisfying L2(u) ∼ R, as u → +∞,
for some p × p matrix R. Equivalently we can write,

γjk(n) = L2,jk(n)n(dj+dk )−1 ∼ Rjkn
(dj+dk )−1, as n→∞.

Condition IV-v. The spectral density matrix function satisfies

f (λ) = λ−DL3(λ)λ−D
∗
, (3)

where L3 is a Cp×p-valued, Hermitian symmetric, non-negative definite
matrix function satisfying L3(λ) ∼ G , as λ→ 0, for some p × p,
Hermitian symmetric, non-negative definite matrix G . Equivalently,

fjk(λ) = L3,jk(λ)λ−(dj+dk ) ∼ Gjkλ
−(dj+dk ) =: gjke

iφjkλ−(dj+dk ) as λ→ 0,
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Multivariate LRD

where gjk ∈ R and φjk ∈ [−π, π).

Remarks:
1 The individual component series {X j

n}n∈Z, j = 1, . . . , p, of a
multivariate LRD series are LRD with parameters dj , j = 1, . . . , p.

2 Note from (3) that f (λ) is Hermitian, non negative definite. The
entries φjk are referred to as phase parameters.

3 We supposed for simplicity that all slowly varying functions behave as
constants.

4 The squared coherence function H2
jk(λ) = |fjk(λ)|2/(fjj(λ)fkk(λ))

satisfies 0 ≤ H2
jk(λ) ≤ 1. As λ→ 0, this translates into

0 ≤ lim
λ→0

|Gjk |2λ−2(dj+dk )

Gjjλ−2djGkkλ−2dk
=
|Gjk |2

GjjGkk
≤ 1 (4)

and also explains why the choice of λ−(dj+dk ) is natural for the
cross-spectral density fjk(λ).
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Comparing cond. II-v and IV-v

Suppose that L2,jk are quasi-monotone. Then cond II-v implies cond
IV-v with Gjk = gjke

iφjk given by

φjk = − arctan
{Rjk − Rkj

Rjk + Rkj
tan(

π

2
(dj + dk))

}
,

gjk =
Γ(dj + dk)(Rjk + Rkj) cos(π2 (dj + dk))

2π cos(φjk)
.

Suppose that <L3,jk , =L3,jk are quasi-monotone. Then cond IV-v
implies cond II-v with

Rjk = 2Γ(1−(dj +dk))
{
<Gjk sin(

π

2
(dj +dk))−=Gjk cos(

π

2
(dj +dk))

}
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Linear Representation

Suppose that the series Xn has a linear representation of the form

Xn =
∞∑

m=−∞
ΨmZn−m,

where {Ψm = (ψm,jk)j ,k=1,...,p}m∈Z, a sequence of real matrices such that

ψm,jk = Ljk(m)|m|dj−1,

where L(m) = (Ljk(m))j ,k=1,...,p is an Rp×p-valued function satisfying

L(m) ∼ A+ as m→∞, and L(m) ∼ A− as m→ −∞,

for some p × p real matrices A+ = (a+
jk)j ,k=1,...,p, A− = (a−jk)j ,k=1,...,p.

Then Xn is LRD.
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Example

Consider the series

Xn =
∞∑

m=0

ΨmZn−m,

where {Zn}n∈Z, and Ψm as earlier. Then the phase parameters appearing
in the (j , k) element of the spectral density matrix of Xn have the form
φjk = −(dj − dk)π2 .

Question: What behavior should I consider for Ψm to get a causal
represenation?

Linear combinations of

ca,bm = m−b cos(2πma) and sa,bm = m−b sin(2πma) (?)
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FARIMA(0,D,0)

M+ = (m+
ij ), M− = (m−ij ) ∈ Rp×p.

{Zn}n∈Z such that EZn = 0 and EZnZ
′
m = σ2I if n = m, and = 0 if

n 6= m.

Define a multivariate FARIMA(0,D, 0) series as

Xn = (I − B)−DM+Zn + (I − B−1)−DM−Zn.

For the component wise spectral density I have

fjk(λ) ∼ cj ,kλ
−(dj+dk ), as λ→ 0,

where

cj ,k =
σ2

2π

(
e−i(dj−dk )π

2 A1 + e−i(dj−dk )π
2 A2 + e i(dj−dk )π

2 A3 + e i(dj−dk )π
2 A4

)
and A1 =

∑p
t=1 m

+
jtm

+
kt , A2 =

∑p
t=1 m

+
jtm
−
kt , A3 =

∑p
t=1 m

−
jtm

+
kt , A4 =∑p

t=1 m
−
jtm
−
kt .
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Lots and Lots of Fun Stuff

Self similar processes

Issing model in two dimensions

Infinite sourse Poisson model with Heavy tails

Kechagias Stefanos (UNC) Long-range dependence May 23, 2013 43 / 45



References

The results in part c are a joint work with my advisor Vladas Pipiras.

1 Brockwell, P. J. & Davis, R. A. (2009), Time series: Theory and
methods, Springer.

2 Pipiras, V. & Taqqu, S. M. (forthcoming 2014), Long-Range
Dependence and Self-Similarity.

3 Doukhan, P. Oppenheim, G. Taqqu, S. M. (2003), Theory and
applications of Long-Range Dependence

Kechagias Stefanos (UNC) Long-range dependence May 23, 2013 44 / 45



Thank you!
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