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@ Synthesis of univariate processes using standard circulant embedding
@ Embedding methods for synthesis of 2D fields

© Optimal circulant embedding
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Fast Fourier Transform (FFT)

Discrete Fourier Transform (DFT) of N complex numbers x, ..., xy_1
N—1 .
Xi:=Y xpe PN, k=0,...,N-1. (1)
n=0

o C.F.Gauss 1805, Joseph Fourier 1822, Cooley and Tukey 1965
@ Direct calculation complexity is O(N?)
e Complexity of FFT is O(N log N)

"The most important numerical algorithm of our lifetime”

Gilbert Strang
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Some Linear Algebra

Toeplitz Circulant

@ Toeplitz: All diagonals remain constant
@ Circulant: Each row is the preceding row shifted one entry to the right

o DFT basis diagonalizes circulant matrices. FFT can be used for
efficient computation of the eigenvalues
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One dimensional case

Consider a zero mean stationary Gaussian time series { X, },cz with
autocovariance function

r(n) = EXpX,.

Question: How does one generate X := (Xp, ..., Xy_1)’, given the
autocovariance function of X?

Denote the covariance matrix of X by
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Cholesky

Since X is non-negative definite, using Cholesky decomposition we can
factorize

y — 21/221/2

and set
X =327

where Z is a N(0, Iy) vector.

Problem: The complexity of this method is O(N3), and the approach is
practical only for moderate sample sizes N. What about larger N7?
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Univariate Standard Circulant Matrix Embedding (SCE)

A Circulant Matrix Embedding of X is a circulant matrix

r(0) r(1) oo r(N=1) r(N=2) ... r(1)

r(1) r(0) oo r(N=2) r(N-1) ... r(2)
S| v=1) rN=2) M) H1) (N —2)
r(N—=2) r(N—-1) r(1) r(0) r(N —3)

(1) f2) ... f(N-2) AN—-3) ... K0

of dimension M x M with embedding size M = 2N — 2. Note that )N
contains the covariance matrix >~ . Let also

r(n) =(r(0),r(1),...,r(N—=1),r(N—2),...,r(1)).
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Univariate SCE

The discrete Fourier basis diagonalizes circulant matrices:

Y = F*AF.

. ) 27 2mj(M—1)
- jth column of F* is (l,ef’QTvlj,...,e*’2 A )/VM

- N =diag(Xo, ..., Am—1), where the real eigenvalues of Y are
M—1 .
Am = r(j)e~" m
j=0

and can be computed rapidly using FFT (complexity O(M log M)).
Condition ND: The eigenvalues A\p,, m=0,..., M — 1, are non-negative.
If ND holds then both

X =R(F*NY2Z), and X =Z(F*A\'/2Z7)

have covariance matrix .
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On ND Condition

The circulant matrix embedding for the covariance structure below has
298 negative eigenvalues.

. : o SCE : ND holds if {r(n)}o<n<n—1 satisfies
- convex, decreasing, nonnegative
} ) or
A S S MK <0 k=1, N-1
= ] or
\ / - N is large enough
i | | ) | | If ¥ is not smooth at the boundary of

periodization, ND is likely to fail
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Standard SCE for 2D fields

Consider a zero mean stationary Gaussian field {X,, n € Z2} with
autocovariance function

r(n) = r(ny, m) = EXoX,, neZ2
Goal: Generate the field X on the square grid
GIN)={necZ?:0<n,m<N-1}.

given r(n)in G(N)={neZ?: =N+1<n;,np<N—1}
Question: What is the covariance embedding r(n)?

Example: Powered exponential covariance function

r(n) = e OO, e = VEWE, W=<i §>,

with N =200 and M = 2N — 1 = 399.
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Standard SCE for 2D fields
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Extension scheme: 7(n) = r(n), n€ G(N), and M-periodic
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Standard SCE for 2D fields

The eigenvalues of the covariance embedding are given by the 2D DFT.

M) = 3T Hm)e 2 ke G(m)
neG(M)

@ If ND holds we can construct X as in the univariate case. Condition
ND seems to fail quite often in 2D. Embedding matrix not smooth at
the boundary of periodization ?

Solutions:

> Increase N to some N and take M = 2N — 1. It is convenient to think
of G(N)\G(N) as the transition region. Increasing N to N in SCE
can be thought as extending r(n) over the transition region.

» Smoothing Windows Circulant Embedding (SWCE).
- Apply a smoothing kernel over the transition region
- Works well for several covariance structures.
- Outperforms existing variants of SCE.

Optimal Circulant Embedding
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SCE and SWCE

SCE #(n) SWCE #(n)
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Left: SCE #(n) for N = 200, M = 399 with 56000 negative eigenvalues.
Right: SWCE r(n) for N = 240, M = 479 with 50 negative eigenvalues.
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Optimal Circulant Embedding

The covariance embedding r(n) needs to satisfy the following
@ r(n) = r(n) for n inside the dotted areas, r(n) = r(—n)
@ Nonnegative eigenvalues

Idea: Obtain a circulant matrix embedding as the solution of a quadratic
optimization problem with linear inequality constraints

min ()= 3 wln) (r(n) = 7n))".
neG(M)
subject to  gk(r) >0, ke G(M)

Remark: We only need to focus on the left sub-grid L of G(M), both for
the objective unction and the constraints

min  f(r) = w(n)(r(n) —r(n 2,
iy 1(0) = L w()(oto) = (o) o
subject to gk(r) >0, ke L.
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Primal log-barrier method

r(n) feasible point: gx(r(n)) >0, ke L
optimal value of (C): z* = inf{f(r) | g(r) >0, k€ L}

r* optimal point: r* is feasible and f(r*) = z*

r(n) e-suboptimal point: ¥ is feasible and f(r) — z* <€
Part 1: Eliminate the constraints
. 1
min A7) = F(P)— 1 > log(a(?) ()
kel

Fact: The solutions of the unconstrained problems (U), {r;, t > 0}
(central path points) approach a solution of the constrained problem (C)
as t grows. In fact they are at most m/t— suboptimal, i.e.

f(rf)—z"<m/t,

where m is the number of inequality constraints.
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Primal log-barrier method

Part 2: Quadratic approximation

For a given x = xg and a fixed t consider the second-order Taylor
approximation f;

~

1
fe(x + v) = fi(x) + Vi(x)v + EVTvzft(X)V
Calculate the direction v that minimizes 7 (Newton step)
min  Vf(x)v + 2vTV2f(x)v (N)

Fact 1: Multiple Newton steps yield a sequence of points xx = xx_1 + v
that converges to the minimizer of f;

Fact 2: We only need to take 1 Newton step!
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Primal log-barrier method

Part 3: Conjugate gradient algorithm. First order conditions of (N)
Hv=b, H=V?f(x), b=-Vf

Given vy; Set g = Hvy — b, pg = €9, k = 0;

while ¢, # 0
Quk

Vik+1

€k+1

Sk+1

Pk+1

end (while)

T

T

ekTek _

pl Hpi'
Vk + QipPk;

€k + axHpy;

T
€p+1€k+1
T 1
€4 €k
—€k+1 + Sk+1Pk;

k+1;
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Primal log-barrier method

@ Direct computation Hpy is of order O(N*)
o Using 2D FFT the order drops to O(N?log N)

@ ¢, doesn’t need to be taken very small

Steps of the PLB method
@ Find an initial strictly feasible point r. Pick u > 1, t >0, e > 0.
@ Compute 77, by solving (N) with initial point 7.
© Update r =r7,. If m/t <, stop and return .
@ Increase t to ut and start again from Step 2.
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SWCE and OCE

SWCE #(n) OCE #(n)

Left: SWCE #(n) for N = 200, N = 240, M = 479 with 50 negative eigenvalues.
Right: OCE F(n) with no negative eigenvalues and objective function value 10~7.
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SWCE and OCE

The magnitude of the eigenvalues of W affect the smoothness of the

embedding

SCE 7(n)
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18000 negative eigenvalues

Powered exponential covariance with
near singular W

r(n) =

16 —-15
w=( 2% 07)

Aw = (0.01,3)

o~ (0.01|nf|w)°*
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SWCE and OCE

SWCE 7(n) OCE 7(n)
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Left: SWCE 7(n) for N = 100, M = 359 with 116 negative eigenvalues.
Right: OCE F(n) with no negative eigenvalues and objective function value 10~°.
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OCE and SWCE for intrinsic Gaussian random fields

Preconditioning in conjugate gradient algorithm

Alternative measures - KL divergence 7

@ Primal-dual path following algorithm
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Thank you!
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Remarks on OCE method

Question 1: Does the OCE method work for any covariance structure?
@ As with other embedding methods, OCE’s performance depends on
the strength of discontinuities of the covariance embedding

@ Large w is more likely to lead to an exact embedding, which however
might have some negative eigenvalues.

@ Small i ensures the eigenvalues will be nonnegative, however leading
to approximate embeddings.

Question 2: How does the OCE method compares with Cholesky and
SWCE in terms of speed?

@ For N > 100 Cholesky breaks down (complexity O(N®))

o SWCE is faster at first glance. However the minimum transition
region length needed is not known in advance.
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