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Abstract

Circulant matrix embedding is one of the most popular and efficient methods for

the exact generation of Gaussian stationary univariate series. Although the idea of

circulant matrix embedding has also been used for the generation of Gaussian sta-

tionary random fields, there are many practical covariance structures of random fields

where classical embedding methods break down. In this work, we propose a novel

methodology which adaptively constructs feasible circulant embeddings based on con-

vex optimization with an objective function measuring the distance of the covariance

embedding to the targeted covariance structure over the domain of interest. The op-

timal value of the objective function will be zero if and only if there exists a feasible

embedding for the a priori chosen embedding size. In cases where the optimum is

nonzero, the resulting feasible covariance embedding will be the optimal approxima-

tion to the targeted covariance.

1 Introduction

In this work, we are interested in the synthesis of stationary Gaussian two-dimensional ran-
dom fields. One of the most popular methods for the exact generation of such fields is based
on circulant matrix embedding (CME). Introduced by Davis and Harte (1987) for simulating
stationary Gaussian univariate processes, the method was later extended to random fields
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by Dietrich and Newsam (1993), Wood and Chan (1994), Chan and Wood (1997), Gneiting
et al. (2006), Stein (2012). See also Stein (2002) concerning the case of fractional Brownian
surfaces; Chan and Wood (1999), Helgason et al. (2011) for extensions to the multivariate
(vector) context; Percival (2006) for the case of complex-valued Gaussian processes; and
Craigmile (2003) for some theoretical contributions.

The idea of the method is to use a suitable periodization to embed a covariance matrix of
interest into a larger circulant matrix whose eigenvalues can be computed efficiently using the
fast Fourier transform (FFT). If all the eigenvalues are nonnegative, a stationary Gaussian
random field can be constructed with the embedding circulant matrix as its covariance
matrix. Its suitable subfield is then the desired stationary Gaussian field. While in theory
all eigenvalues can be shown to be nonnegative in the limit of the increasing sample size,
some of the eigenvalues often remain negative for computationally feasible large sample sizes
and many covariance structures of practical interest.

To have all the eigenvalues nonnegative, two approaches have been suggested in the
literature, namely, the cutoff circulant embedding or CCE, for short (Stein (2002), Gneiting
et al. (2006)) and the smoothing windows circulant embedding or SWCE, for short (Helgason
et al. (2014)). In the CCE method, the initial covariance is extended suitably in a parametric
fashion, based on the model at hand, to a larger domain, leading to a covariance embedding
with nonnegative eigenvalues. While such extensions have been found for several examples
of stationary fields, their construction is often nontrivial.

The SWCE approach, on the other hand, does not depend on the model at hand and
is easier to implement by suitably modifying the standard embedding. A possible reason
that some eigenvalues are negative is that the covariance embedding is not “smooth” at the
boundary of periodization. In the SWCE method, the covariance is extended over a transition
region where it is smoothed at the boundary, using a smoothing kernel. Helgason et al.
(2014) propose two types of smoothing: overlapping and nonoverlapping windows. Numerical
studies show that both variants of SWCE work well for a range of covariance structures.
Moreover, when using overlapping windows, the SWCE method greatly outperforms CCE
in the sense of efficiency considered in Helgason et al. (2014). However, for some covariance
structures (for example, as those in Section 4 below), a large transition region is needed for
the SWCE method to work.

We propose and study here a new method to simulate stationary Gaussian fields using
circulant matrix embedding, called optimal circulant embedding or OCE, for short. We find
the method interesting and promising for several reasons. First, the method proposes a
novel approach based on quadratic constrained optimization. This is quite fitting given the
growing integration of optimization tools in statistics. Second, as seen below, several key
components of the optimization procedure can be implemented more efficiently using FFT,
making it natural to combine the circulant matrix embedding and optimization approaches.
Third, we show numerically that the OCE method works better than the SWCE method
(and hence the CCE method by the discussion above) for several covariance classes, especially
when the transition region is small.

More specifically, the OCE method consists of formulating a quadratic programming
problem with linear inequality constraints, to find a feasible covariance embedding, meaning
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that its eigenvalues are nonnegative. The exact optimization problem has the form

min
r̃(n1,n2)

N−1∑

n1,n2=−N+1

(r(n1, n2)− r̃(n1, n2))
2 ,

subject to λk1,k2(r̃) ≥ 0, −Ñ + 1 ≤ k1, k2 ≤ Ñ − 1,

(1.1)

where {r(n1, n2), −N +1 ≤ n1, n2 ≤ N −1} is a given covariance function of a random field

X(n1,n2) on a square grid {(n1, n2) : 0 ≤ n1, n2 ≤ N−1}, {r̃(n1, n2), −Ñ+1 ≤ n1, n2 ≤ Ñ−1}
is the corresponding covariance embedding on a larger grid {(n1, n2), −Ñ + 1 ≤ n1, n2 ≤
Ñ − 1} with Ñ ≥ N , and λk1,k2(r̃) are the eigenvalues of the covariance embedding r̃. The
difference between the larger and smaller square grids is the transition region, referred to
above. When the minimum value of the objective function is equal to zero, then the method
is exact, namely, the synthesized field will have the targeted covariance. If for some choice
of Ñ this is not true, then the solution of (1.1) can be thought as the best approximation to
the targeted covariance, that has no negative eigenvalues. The focus of this paper though is
on the situations where the objective function is zero (up to some tolerance error) and the
simulation is exact.

To solve (1.1) numerically, we use an interior-point algorithm called the primal log-barrier
method (see Section 3 for more details). The basic idea of this algorithm is to solve a sequence
of unconstrained problems of the form

min
r̃(n1,n2)

Ft(r̃) :=
N−1∑

n1,n2=−N+1

(r(n1, n2)− r̃(n1, n2))
2 − 1

t

Ñ−1∑

k1,k2=−Ñ+1

log(λk1,k2(r̃)) , (1.2)

for positive increasing values of t. The log term in (1.2) serves as a “barrier” not allowing
the search algorithm starting from a strictly feasible point r̃ (with all eigenvalues λk1,k2(r̃)
positive) to move into the region of non-feasible points r̃ (with some eigenvalues λk1,k2(r̃) zero
or negative). On the other hand, a large t ensures that the minimized function Ft(r̃) is close
to that of interest in (1.1). One can show that the solutions r̃t(n1, n2) of (1.2) approach a
solution of (1.1) as t increases. Eliminating inequality constraints of (1.1) by inserting them
in the objective function in (1.2) is a frequently used practice, since unconstrained problems
are far easier to handle.

To solve the problem (1.2) (for a fixed t), we approximate Ft in (1.2) by a quadratic

function F̂t (around a strictly feasible initial point), and calculate its minimizer r̃t,a(n1, n2).
This reduces the problem to solving a linear system of the form

Hv = b, (1.3)

where H is the Hessian of Ft in (1.2) and v is the covariance embedding r̃ indexed as a vector.
The symmetry and the positive definiteness of the coefficient matrix H allows solving the
systems (1.3) using a popular iterative algorithm called the conjugate gradient method. As
we show below, key steps of the conjugate gradient method applied to our problem can be
carried out more efficiently using FFT.

Though the various components of the optimization procedure discussed above might
appear straightforward, there are in fact a number of technical issues that need to be ad-
dressed. For example, as indicated above, we need to show how FFT is used in solving (1.3).
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Among other issues arising in the procedure are the role and choice of the updating rule
for t in (1.2), the effect that the approximation of Ft by F̂t has on the convergence of the
approximate solutions r̃t,a(n1, n2) to the solution of (1.1), and so on. No less important is
to see how the suggested approach performs on covariance structures of interest and how it
compares to other approaches. All these issues are addressed in the paper.

The rest of the paper is organized as follows. In Section 2, we briefly review the existing
circulant embedding schemes. Optimal circulant embedding is presented in Section 3. The
performance of the method for several covariance structures is studied in Section 4. Technical
proofs and figures are moved to Appendices A and B.

2 Available circulant matrix embeddings

Let X = {Xn, n = (n1, n2) ∈ Z
2} be a zero mean, stationary Gaussian two-dimensional

random field. The autocovariance function of X is defined as

r(n) = r(n1, n2) = EX0Xn, (2.1)

and satisfies r(n) = r(−n), n ∈ Z
2. We are interested here in the synthesis of the two

dimensional field X on the square grid

G(N) = {n = (n1, n2) ∈ Z
2 : 0 ≤ n1, n2 ≤ N − 1}, (2.2)

though the methods described below can be extended easily to rectangular grids and likely
to higher dimensions. For reference and comparison, the rest of Section 2 contains a short
description of the existing circulant matrix embedding methods. We recall the standard
CME (Circulant Matrix Embedding) method in Section 2.1. The CCE (Cutoff Circulant
Embedding) and SWCE (Smoothing Windows Circulant Embedding) methods are discussed
briefly in Sections 2.2 and 2.3, respectively.

2.1 Standard embedding

Set M = 2N −1 to be the (side) size of a larger embedding grid G(M), where an embedding
field will be generated. Let also r̃(n), n ∈ G(M), be the covariance embedding defined
through the symmetry relation

r̃(n) = r(ξN(n)), n ∈ G(M), (2.3)

where ξL(u) = (ξ1,L(u), ξ2,L(u)) is defined by

ξ1,L(u) = ξ2,L(u) =

{
u, if 0 ≤ u ≤ L− 1,
u−M, if L ≤ u ≤M − 1.

(2.4)

(The subscript L in (2.4) differs from N in (2.3) since the function (2.4) will also be used for
other indices than N .) Extend r̃ periodically in both dimensions by period M . Note that r̃
can also be defined as the function that is M–periodic in both dimensions, and satisfies

r̃(n) = r(n), n ∈ G̃(N), (2.5)
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where the grid G̃(N) is defined as

G̃(N) = {n = (n1, n2) ∈ Z
2 : −(N − 1) ≤ n1, n2 ≤ N − 1} (2.6)

(see also Remark 2.1 below).

Next, consider a circular convolution operator Σ̃, whose action on a vector u(n), n ∈
G(M), is defined by

Σ̃u(n) =
∑

m∈G(M)

r̃(m− n)u(m), n ∈ G(M). (2.7)

The two-dimensional DFT basis {e−i2πk·(n/M), n ∈ G(M)}, k ∈ G(M), where n/M =

(n1/M, n2/M) and · is the usual inner product, diagonalizes the operator Σ̃. Hence, the

eigenvalues of Σ̃ are given by

λk =
∑

n∈G(M)

r̃(n)e−i2πk·(n/M), k ∈ G(M), (2.8)

and can be computed efficiently using the two-dimensional FFT. Assuming that

λk ≥ 0, k ∈ G(M), (2.9)

consider the complex-valued random variables

X̃n =M−1
∑

k∈G(M)

λ
1/2
k (Z0

k + iZ1
k)e

−i2πn·(k/M), n ∈ G(M), (2.10)

where Z0
k , Z

1
k , k ∈ G(M), are independent standard Gaussian random variables. One can

show that {ℜ(X̃n), n ∈ G(M)} and {ℑ(X̃n), n ∈ G(M)}, that is, the real and imaginary

parts of X̃n, are independent random fields with the covariance structure

Eℜ(X̃n)ℜ(X̃n+h) = Eℑ(X̃n)ℑ(X̃n+h) = r̃(h), n, n + h ∈ G(M). (2.11)

By using (2.5) and (2.11), a subfield Xn = ℜ(X̃n) or Xn = ℑ(X̃n), n ∈ G(N), is a Gaussian
random field with the desired covariance structure r.

The construction of the variables X̃n is possible only under the condition (2.9). This
condition, however, often does not hold for some k ∈ G(M), and hence the above standard
circulant matrix embedding (CME) method fails. A common way to make it work is to

increase N to some Ñ . (As noted in Section 1, the condition (2.9) holds in the limit N →∞,

under mild assumptions.) It is convenient to think of G̃(Ñ)\G̃(N) (or its periodization in

G(M) with M = 2Ñ − 1) as a transition region. Increasing N to Ñ can thus be thought as
extending the covariance function r(n) over the transition region. Since increasing N to any

computationally feasible Ñ often does not ensure (2.9), it is natural to consider other ways

to extend r(n) over the transition region G̃(Ñ)\G̃(N).
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Remark 2.1 The reader may find the use of both domains G̃(N) and G(M) excessive, and
wonder why not use only one of them. In particular, for example in view of (2.3) and (2.5),

the domain G̃(N) may seem to be preferred for simplicity. There are several reasons why
we, and others, work on G(M). First, it is natural to think of extending G(N) to G(M),
where a subfield is ultimately selected. (In one dimension, a longer series is generated at
times 0, 1, . . . ,M − 1, and a shorter series is selected of size N .) Second, the indexing by
G(M) is more common in scientific software, e.g. MATLAB. Third and more importantly
in our context, we will refer below to the discontinuities of the covariance embedding at the
boundary of periodization (see the beginning of Section 2.3). The discontinuities are easier

to visualize on G(M), not G̃(N).

2.2 Cutoff embedding

The CCE (Cutoff Circulant Embedding) method considers two extension schemes over the
transition region, and is used in models with isotropic covariances r(n) = ψ(||n||2), where ψ
is a function and ||·||2 denotes the usual Euclidean distance. In one CCE extension (Gneiting

et al. (2006)), r̃ is defined on G̃(Ñ) as

r̃(n) =

{
r(n), if 0 ≤ ||n||2 ≤

√
2N,

b1(a1 − ||n||1/22 ), if
√
2N ≤ ||n||2 ≤ Ñ − 1,

(2.12)

and then periodically extended in both dimensions. The constants a1, b1 and Ñ are chosen
as

a1 = (
√
2N)1/2 − (

√
2N)−1/2 1

2

ψ(
√
2N)

ψ′
√
2N

, b1 = −2(
√
2N)1/2ψ′(

√
2N), Ñ = [a21], (2.13)

where [x] denotes the integer part of x. The choices (2.13) ensure that r̃(n) is once contin-
uously differentiable at t =

√
2N , while the choice of

√
2N in (2.12) is to have r̃(n) = r(n)

for n ∈ G̃(N).
In another CCE extension, the embedding r̃ is defined as

r̃(n) =

{
r(n), if 0 ≤ ||n||2 ≤

√
2N,

b2(a2 − ||n||2)2, if
√
2N ≤ ||n||2 ≤ Ñ − 1,

(2.14)

where the constants a2, b2 and Ñ satisfy

a1 =
√
2N − 2

ψ(
√
2N)

ψ′(
√
2N)

, b1 =
(ψ′(
√
2N))2

4ψ(
√
2N)

, Ñ = [a22]. (2.15)

After extending r into r̃ as in (2.12) or (2.14), and periodization, the rest of CCE is the

same as the algorithm in (2.7)–(2.10) with M = 2Ñ − 1. As shown in in Theorems 1 and 2
of Gneiting et al. (2006), under the extension schemes (2.12) and (2.14), the condition (2.9)
always holds for several classes of covariance models.
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2.3 Smoothing windows

The SWCE (Smoothing Windows Circulant Embedding) method is another way of extending
the covariance function over the transition region. In the standard CME, the cross sections
{(n1, n2) : n1 = N − 1, 0 ≤ n2 ≤ M − 1} and {(n1, n2) : n2 = N − 1, 0 ≤ n1 ≤ M − 1} are
the boundary of periodization, when extending r periodically to r̃ from G̃(N) to Z

2 (and,
in particular, to r̃ on G(M)). Along this boundary, the covariance embedding r̃ is often
not smooth (see, for example, the top left plots in Figures 1–2). The idea of the SWCE
method is to smooth the discontinuities at the boundary of periodization in the standard
CME, since the discontinuities can be thought to be the source of negative eigenvalues (of
FFT). Helgason et al. (2014) showed that the SWCE method outperforms the CCE and
standard CME for a range of covariance functions. In this section, we review briefly the
two variants of the SWCE method, called the overlapping and nonoverlapping windows. For
more details, see Helgason et al. (2014).

We begin with the definition of a smoothing window. Let 0 < P < Q. A smoothing
window is defined as

w(x) =





1, if x ∈ G̃(P ),
ρ(x), if x ∈ G̃(Q) \ G̃(P ),
0, if x ∈ R

2 \ G̃(Q),
(2.16)

where ρ(x), x ∈ R
2, is a real-valued function that decays smoothly from 1 to 0 when moving

from the boundary of G̃(P ) toward that of G̃(Q).

In the nonoverlapping SWCE, one considers a transition region of side length Ñ − N
and an embedding size M = 2Ñ − 1. The covariance function is then extended through the
transition region as

r̃(n) = r(n)w(n), n ∈ G̃(Ñ), (2.17)

where w(n) is the smoothing window in (2.16) with

P = N, and Q = Ñ. (2.18)

Since w(n) = 1 for n ∈ G̃(N), we have r̃(n) = r(n) for n ∈ G̃(N). The rest of the algorithm
(after periodizing r̃) is the same as CME in Section 2.1. The basic idea behind (2.17) is that
w(n) smooths r̃(n) at the boundary of periodization by forcing it to zero.

Note that (2.17) is the embedding on G̃(Ñ), which is then periodized in both dimensions.
The covariance embedding r̃(n) can equivalently be defined on G(M) and then periodized
by setting

r̃(n) = r(n1, n2)w1(n1, n2) + r(n1, n2 −M)w2(n1, n2)

+r(n1 −M,n2)w3(n1 −M,n2 −M) + r(n1, n2)w4(n1, n2), n ∈ G(M),(2.19)

where
w1(n1, n2) = w(n1, n2), w2(n1, n2) = w(n1, n2 −M),
w3(n1, n2) = w(n1 −M,n2 −M), w4(n1, n2) = w(n1 −M,n2).

(2.20)

To see the equivalence, note that only one of the wi(n)’s can be different from zero. See
Section 3.2 in Helgason et al. (2014) for more details.
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In the overlapping SWCE, the covariance embedding r̃(n) is smoothed without forcing
it to be zero as in the nonoverlapping SWCE. The basic idea is to use the embedding given
by (2.19)–(2.20) but choosing a smoothing window (2.16) with

P = N, and Q = 2Ñ −N. (2.21)

The fact that Q > Ñ in (2.21) ensures the overlap of wi(n)’s. One can show that under

(2.21), r̃(n) = r(n) for n ∈ G̃(N). The rest of the algorithm (after periodizing r̃) is the
same as CME in Section 2.1 using the embedding (2.19)–(2.20) with (2.21). The overlapping
SWCE was found to outperform the nonoverlapping SWCE in Helgason et al. (2014).

3 Optimal circulant embedding

We propose here a new type of circulant matrix embedding method to generate a zero mean,
stationary Gaussian random field X on the grid G(N). Take Ñ > N and set M = 2Ñ − 1.
We shall also assume that the covariance embedding r̃ = {r̃(n), n ∈ G(M)} has the property
r̃(n) = r̃(−n), and satisfies the symmetry condition

r̃(n) = r̃(ξÑ(n)), n ∈ G(M), (3.1)

where the function ξÑ(u) is given in (2.4). The symmetry condition (3.1) ensures, in par-
ticular, that the eigenvalues of the covariance embedding r̃ are real-valued (see also the
discussion following Lemma 3.1 below).

3.1 Formulation of the constrained optimization problem

The basic idea of the OCE (Optimal Circulant Embedding) method is to obtain the covari-

ance embedding r̃ = {r̃(n), n ∈ G(M)}, or by periodization r̃ = {r̃(n), n ∈ G̃(Ñ)}, by
solving the following optimization problem:

min
r̃

f ∗(r̃) =
∑

n∈G̃(N)

(
r(n)− r̃(n)

)2
,

subject to gk(r̃) ≥ 0, k ∈ G̃(Ñ),

(3.2)

where r = {r(n), n ∈ G̃(N)} is a given covariance structure and gk(r̃) are the eigenvalues of

the covariance embedding r̃, given by (after replacing G(M) by G̃(Ñ) in (2.8) for convenience

and using G̃(Ñ) for indexing)

gk(r̃) =
∑

n∈G̃(Ñ)

r̃(n)e−i2πk·(n/M), k ∈ G̃(Ñ). (3.3)

Note that the sum in the first relation in (3.2) is taken over a smaller grid G̃(N) than

G̃(Ñ) of the sum in (3.3). Minimization of f forces the covariance embedding r̃ to be as close

as possible to the targeted covariance r over the domain of interest G̃(N). Hence, when the
minimum value of f is zero, the solution of the problem can be used for the exact synthesis
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of the desired field. The inequality constraints in (3.2) rule out candidate (non-feasible)
minimizers that lead to covariance embeddings with negative eigenvalues.

To write the problem (3.2) on the domain G(M), introduce the weights

β(n) =

{
1, n ∈ G̃(N),

0, n ∈ G̃(Ñ)\G̃(N),
(3.4)

on G̃(Ñ) and extend them periodically in both dimensions. With r extended periodically in
the same way, the problem (3.2) can be written as

min
r̃

f ∗(r̃) =
∑

n∈G(M)

β(n)
(
r(n)− r̃(n)

)2
,

subject to gk(r̃) ≥ 0, k ∈ G(M).

(3.5)

The optimization problem (3.5) is a quadratic programming problem with linear inequality
constraints. In the optimization literature, this problem is treated by regarding the under-
lying variable as a vector. In the case considered here, the underlying variable r̃ is indexed
by the square grid G(M). Indexing is just a question of perspective and we will continue
using parameters indexed by grids (though also sometimes switch to vectors, as for example,
in one of the proofs).

An issue requiring immediate attention, however, is the symmetry of the covariance
embedding r̃, expressed through the relation (3.1). We need to keep track only of the non-
symmetric half of the covariance, which we choose to be over the smaller rectangular grid

G+(M) = {n ∈ Z
2, 0 ≤ n1 ≤ Ñ − 1, 0 ≤ n2 ≤ M − 1}. (3.6)

Note that the symmetry relation (3.1) implies that, for (n1, n2) ∈ G(M)\G+(M), r̃(n1, n2) =
r̃(M − n1,M − n2), so that the values of r̃(n) for n ∈ G(M)\G+(M) are indeed determined
from those on G+(M).

When working on the smaller rectangle G+(M), we need to have a representation of the
eigenvalues gk(r̃) where the sum

∑
n∈G(M) is replaced by

∑
n∈G+(M), that is, a representation

of the form
gk(r̃) =

∑

n∈G+(M)

ck(n)r̃(n) =: [Ar̃](k), (3.7)

where ck(n) are suitable weights and A is viewed as a linear operator acting on a field defined
on G+(M). The next lemma provides an expression for the weights ck(n). The proof of the
lemma can be found in Appendix A.

Lemma 3.1 Suppose (3.1) holds, and the eigenvalues gk(r̃) are given by (2.8). Then, the
relation (3.7) holds with the weights ck(n), k ∈ G(M), n ∈ G+(M), given by

ck(n) = c(k1,k2)(n1, n2) =

{
2 cos(2πk · (n/M)), if n1 6= 0,

cos(2πk2n2/M), if n1 = 0.
(3.8)

9



A number of comments are in place concerning Lemma 3.1. First, note that the relation
(3.8) implies that c(M,M)−k(n) = ck(n). Therefore,

gk(r̃) ≥ 0, k ∈ G+(M), (3.9)

yields nonnegative gk(r̃) for general k in the larger gridG(M). Thus, the number of inequality
constraints in (3.5) can be reduced by half. Second, it also follows from (3.8) that gk are
real-valued.

We will not use Lemma 3.1 to calculate the eigenvalues gk(r̃) = [Ar̃](k) – these can be
computed efficiently by using the two-dimensional FFT. The relation (3.7), however, plays
a significant role in the practical implementation of the OCE method in the following sense.
As can be seen below in Section 3.2, the algorithm we use to solve the problem (3.5) requires
multiple evaluations of both [Ar̃](k) and [AT r̃](k), where AT refers to the adjoint operator
of A (if A is viewed as a matrix, AT is its transpose). We show in the next lemma, that
[AT r̃](k) can be computed using [Ar̃](k) and hence FFT. The proof of the lemma is based
on (3.7) and can be found in Appendix A.

Lemma 3.2 The operators A and AT are related as

[AT y](k) = [Ay](k) + Ek, k ∈ G+(M), (3.10)

where

Ek =

{
−∑M−1

n2=0 cos(2πk2n2/M)
[∑Ñ−1

n1=1 y(n1, n2)
]
, if k1 = 0,

∑M−1
n2=0 cos(2πk2n2/M)y(0, n2), if k1 6= 0.

Note that Ek in the lemma above can also be calculated efficiently using FFT. We are
now ready to present the method to solve the optimization problem (3.5), which by the
discussion around (3.9) becomes

min
r̃

f(r̃) =
∑

n∈G+(M)

β(n)
(
r(n)− r̃(n)

)2
,

subject to gk(r̃) ≥ 0, k ∈ G+(M).

(3.11)

3.2 Primal log-barrier method

To solve (3.11), we use the primal log-barrier (PLB) method. We outline the method below
in order to refer to its parts that will be specialized in our problem. For a more detailed
account, see Chapter 11 in Boyd and Vandenberghe (2004), and Section 19.6 in Nocedal and
Wright (2006).1

We start by recalling some convex optimization notions from Boyd and Vandenberghe
(2004), p. 128, adjusting the notation suitably for two-dimensional fields. The optimal value
z∗ of the problem (3.11) is defined as z∗ = inf{f(r̃) | gk(r̃) ≥ 0, k ∈ G+(M)}. We will
say that a (field) point r̃ is feasible if gk(r̃) ≥ 0, k ∈ G+(M) (if gk(r̃) > 0, k ∈ G+(M),
the point r̃ is called strictly feasible). The set of all feasible points will be called feasible

1The reader familiar with optimization methods may skip to the end of the section where the use of FFT

in the CG method is discussed.
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region. A (field) point r̃∗ is said to be an optimal point, or to solve the problem (3.11) if it
is feasible and f(r̃∗) = z∗. Moreover, a feasible point r̃ with f(r̃) ≤ z∗ + ǫ (ǫ > 0) is called
ǫ−suboptimal.

To ease the presentation of the PLB method, we break it down into 3 parts described
next. The actual steps of the PLB algorithm are outlined at the end of this section.

Part 1: Eliminating the constraints

Define the logarithmic barrier function

φ(r̃) = −
∑

k∈G+(M)

log(gk(r̃)), (3.12)

with the domain {r̃ = r̃(n) ∈ G+(M) | gk(r̃) > 0, k ∈ G+(M)}. To eliminate the constraints
in (3.11), the logarithmic barrier φ is introduced as a penalty term in the objective function
of (3.11). More specifically, let t > 0 and consider the unconstrained problem

min
r̃

ft(r̃) := tf(r̃) + φ(r̃). (3.13)

If gk(r̃) < 0, then by convention the value of ft in (3.13) is ∞.
One can show that the minimizers of (3.13), which we denote by r̃∗t (n), approach a

solution of (3.11) as t grows, under certain conditions (see, for example, Theorem 3.10 in
Forsgren et al. (2002), p. 548, for a detailed proof and Boyd and Vandenberghe (2004),
pp. 562-563, for an intuitive discussion). The points r̃∗t (n) form the so-called central path
{r̃∗t (n), t > 0}, and are at most m/t–suboptimal for the problem (3.11), i.e.

f(r̃∗t (n))− z∗ ≤ m/t, (3.14)

where m = ÑM is the number of inequality constraints in (3.11). See Boyd and Vanden-
berghe (2004), pp. 565-566, for a proof.

Part 2: Quadratic approximation

We now turn to solving the unconstrained optimization problem (3.13). It is convenient here
to view each ft as a function whose argument is a vector x ∈ R

m, where m is the number of
points in the grid G+(M). Consider the second-order Taylor approximation f̂t of ft around
some given x = x0 (for a fixed t)

f̂t(x+ v) = ft(x) +∇ft(x)v +
1

2
vT∇2ft(x)v, (3.15)

where ∇ft and ∇2ft denote the gradient and Hessian of ft, respectively. Instead of minimiz-
ing the function f(x), we will choose a point x0 and find the direction v that minimizes the
Taylor approximation of ft around x0. In other words, we will solve the quadratic problem

min
v
∇ft(x)v + 1

2
vT∇2ft(x)v (3.16)

for x = x0. In the optimization literature, the vector v is called the Newton direction and
the process of calculating v is called the Newton step. Carrying out multiple Newton steps
yields a sequence of points that converges to the solution of the exact problem (3.13).
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For our problem, however, since t is increasing, it is not necessary to find exact minimizers
of the problem (3.13). In fact, it is sufficient to calculate only one Newton direction for each
value of t and initial value x = x0. This fact is argued in Bertsimas and Tsitsiklis (1997) for
linear objective functions (see the discussion under relation (9.19) on p. 424 and figure 9.6
on p. 425) and in Boyd and Vandenberghe (2004), p. 570, for general convex functions.

As expected, the approximate problem (3.16) is much easier to solve. The first-order
condition linear system is

Hv = b, (3.17)

where H and b are given by

H = ∇2ft(x), b = −∇ft(x). (3.18)

Thus, the minimizer of f̂t, for a fixed t and initial point x = x0, is given by

x̂∗ = x0 + v∗, (3.19)

where v∗ is the solution of (3.17).

Part 3: Conjugate gradient algorithm

The conjugate gradient (CG) algorithm is an iterative procedure for solving linear systems
of the form (3.17) with symmetric and positive definite matrices H . It is particularly appro-
priate for large problems, which is the case with (3.11) even for moderate M . Moreover, in
our case, the key steps of the algorithm can be implemented more efficiently through FFT.
We give next a description of the CG method following Nocedal and Wright (2006), p. 112.

Outline of the CG algorithm

Given v0; Set ǫ0 = Hv0 − b, p0 = ǫ0, k = 0;

while ǫk 6= 0

αk ←
ǫTk ǫk
pTkHpk

;

vk+1 ← vk + αkpk;

ǫk+1 ← ǫk + αkHpk;

sk+1 ←
ǫTk+1ǫk+1

ǫTk ǫk
;

pk+1 ← −ǫk+1 + sk+1pk;

k ← k + 1;

end (while)

The major computational tasks to be performed at each iteration of the CG algorithm,
are calculating the products Hpk, p

T
kHpk and ǫ

T
k+1ǫk. In our case, however, these calculations

can be done more efficiently using FFT. This is possible because, as shown in Lemma 3.3
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below, both the Hessian matrix H and the negative gradient b can be expressed as functions
of the linear operators A and AT , which can be implemented using FFT by Lemmas 3.1 and
3.2. Indeed, note that a direct matrix-vector calculation of Hp is of the order m2 for an
m ×m matrix H and an m × 1 vector p. In our problem, m is of the order N2 and hence
m2 of the order N4. On the other hand, if H refers to FFT and p to a field, the order of
calculation becomes N2 log(N).

In the practical implementation of the CG algorithm, we considered the stopping rule
ǫk < TOL for a tolerance TOL = 0.1. For all covariance functions considered in Section 4,
we found that calculating the Newton step with higher precision (taking smaller tolerance)
led to the same optimal value for f , requiring however a larger number of steps.

Before we state Lemma 3.3, some notation is necessary. Given a field r = {r(n), n ∈
G+(M)}, define {d(k), k ∈ G+(M)} to be the field whose kth element is given by

d(k) = −([Ar](k))−1 = −1/([Ar](k)). (3.20)

Next, let D := diag(d) be a linear operator whose action on the field r is defined as

[Dr](k) = d(k) · r(k), k ∈ G+(M). (3.21)

We are now ready to state Lemma 3.3. The proof of the lemma can be found in Appendix
A.

Lemma 3.3 Let β(n) be the weights defined in (3.4). Then, the Hessian matrix H and the
negative gradient b in (3.17) can be viewed as a linear operator and a two-dimensional field
given by, respectively,

H = tW + ATD2A, and b(n) = t(Wr̃(n)− s(n)) + [ATd](n), (3.22)

where W = diag(β(n)) and s(n) = β(n)r(n).

We conclude with a general outline of the primal log-barrier method. Further comments
can be found in Section 3.3. Let r̃∗t,a denote the field analogue of the approximate minimizer
x̂∗ in (3.19), i.e. the solution of the optimization problem

min
r̃
f̂t(r̃). (3.23)

Steps of the PLB method

1. Find an initial strictly feasible point r̃0 for the problem (3.11). Pick constants t0 > 0,
µ > 1, and accuracy ǫ > 0. Set t = t0 and r̃ = r̃0.

2. Compute r̃∗t,a by solving the problem (3.23) or equivalently (3.17) with initial point r̃,
using the CG algorithm.

3. Update r̃ = r̃∗t,a. If m/t < ǫ, stop and return r̃; since f(r̃∗t,a) (≈ f(r̃∗t )) does not differ
from the objective at the optimum by more than m/t, we can ensure that f(r̃) is less
than ǫ away from the optimal value.

4. Increase t to µt and start again from Step 2.
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3.3 Further discussion on the PLB method

In this section, we discuss the choice of the parameters r̃0, t0 and µ above. The initial
covariance embedding r̃0 needs to be strictly feasible (i.e. [Ar̃0](k) > 0 for all k). We describe
below a straightforward way to choose such a point. The roles of t0 and µ, on the other
hand, are less straightforward. Note that the domain of the function f̂t is different from
the feasible region of the constrained problem (3.11). This means that the CG algorithm

used to find approximate minimizers of ft will possibly result in minimizers of f̂t which
are not feasible points for (3.11). The parameters t0 and µ are selected to mitigate this effect.

Choice of r̃0: To find a strictly feasible initial point r̃0 in Step 1 of the PLB method, we
first calculate the standard covariance embedding r̃(n), n ∈ G(M), as defined through the
relation (2.3). Let F (k) := [Ar̃](k), k ∈ G(M), be the corresponding spectrum (which can
be calculated efficiently through FFT). We then shift the spectrum by a positive constant c
so that all of its elements become positive (taking c = 2|mink∈G(M) F (k)| will ensure that).
Denote the resulting spectrum by F+(k). Finally, let y(n), n ∈ G(M), denote the inverse
FFT of F+(k). Taking r̃

0(n) = r(0)y(n)/y(0) yields a strictly feasible initial point with the
targeted scale r̃0(0) = r(0).

Choice of t0: Observe that f̂t can be written as

f̂t(r̃) = tf(r̃) + φ̂(r̃), (3.24)

where φ̂ denotes the second-order Taylor approximation of the logarithmic barrier φ
(defined in a similar manner as f̂t in (3.15)). Selecting a small t0 essentially diminishes the

contribution of f to f̂t and enhances the role of φ̂, in the early steps of the PLB method.
For points outside the feasible region, the value of φ is (by our convention) infinite, and

thus we expect the value of φ̂ to be very large. As a result, these points will not be favored
by the CG algorithm in the initial iterations of the PLB method. For our simulations (see
Section 4), we used a small t0 = 0.0001, which proved to work well for all the covariance
structures considered. See Boyd and Vandenberghe (2004), pp. 570-571, for more elaborate
choices for t0.

Choice of µ: When µ is small (near 1), two consecutive t’s in the PLB method are not very
different. As a result, the problem (3.23) is perturbed only slightly from one iteration to
another. Moreover, the update rule in Step 3 of the algorithm implies that the initial point
used when solving the problem (3.23) is the solution of the previous iteration. Since the two
problems are only slightly different, we expect this choice of initial point to be a good one,
and therefore the conjugate gradient algorithm will require less time to find the solution.
The downside of this strategy is that a large number of iterations will be required to reach
the suboptimality property m/t < ǫ in Step 3 of the method.

On the other hand, when µ is large, t is increased rapidly at each PLB iteration and
thus the convergence to the suboptimality property is much faster. This aggressive update
of t, however, means that there will be a large difference between the problems (3.23) at two
consecutive iterations, and therefore the solution of one iteration might not be a good initial
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point for the next. This might decrease the quality of the Taylor approximation, potentially
leading to a solution outside the feasible region.

When t is updated aggressively (large µ), note also that the first term in (3.24) dominates
the objective function and thus the CG algorithm focuses more on iterates that minimize
f in (3.11) and less on iterates that satisfy the constraints in (3.11). In other words, large
values of µ are more likely to lead to an exact circulant embedding, which however might
have some negative eigenvalues. Taking smaller values of µ will ensure that the eigenvalues
are nonnegative, however leading to approximate embeddings. We discuss these situations
further in Section 4.

4 Simulations

In this section, we provide a Monte Carlo study comparing the OCE and SWCE methods, as
well as numerical illustrations of all the circulant embedding methods discussed above. For
our comparisons, we consider the anisotropic covariance function of the powered exponential
form

r(n) = e−(θ||n||W )α, 0 < α ≤ 2, θ > 0, (4.1)

where ||t||W :=
√
t′Wt for column vectors t and W is a symmetric positive definite 2 × 2

matrix, and the isotropic Cauchy covariance function of the form

r(n) = (1 + (θ||n||2)α)−β/α , 0 < α ≤ 2, β > 0, θ > 0. (4.2)

For the powered exponential covariance structure (4.1), we consider two configurations, with
α = 0.5, θ = 0.01 and W = W1 or W2, where

W1 =

(
1 1
1 2

)
, W2 =

(
1.6388 −1.489
−1.489 1.3712

)
. (4.3)

(While there is nothing particularly special about the choice of W1, the matrix W2 is chosen
to be nearly singular as discussed in Section 4.1 below.) For the Cauchy covariance structure
(4.2), we consider the following parameter values

α = 1.3, β = 0.01, θ = 0.01. (4.4)

For the SWCE method, overlapping windows are used throughout.

4.1 Powered exponential covariance

Figure 1 shows the covariance embeddings resulting from the standard CME, SWCE and
OCE procedures for N = 200 and Ñ = 240 (transition region length 40) when the matrix
W1 is used in (4.1). In the standard CME (top left), the covariance embedding is not
smooth at the boundary of periodization resulting in many negative eigenvalues (77,300).
The SWCE method (top right), as expected, smooths the covariance embedding at the
boundary. However, for this transition region length, some of the eigenvalues (50) are still
negative. Finally, the covariance embeddings of the OCE method (middle left and middle
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right plots) have no negative eigenvalues, while their values within the corner areas marked
with broken lines are those of the desired covariance (up to the indicated error min f). These
plots visualize the goal of the optimization problem (3.2). The two bottom plots show 2 cross
sections of the covariance embeddings from all 3 methods.

Figure 2 shows the covariance embeddings resulting from the standard CME, SWCE
and OCE procedures for N = 100 and Ñ = 359 (transition region length 80) when the
matrix W2 is used in (4.1). The matrix W2 is nearly singular having eigenvalues 0.01 and 3.
This singularity causes more pronounced discontinuities at the boundary of periodization –
c.f. the standard CME plots in Figures 1–2 (upper left). The SWCE method smooths the
discontinuities. However, the resulting embedding still has some negative eigenvalues (116).
Moreover, even though the length of the transition region here is larger compared to Figure
1, the number of negative eigenvalues has increased. This is due to the ill behavior of the
weight matrix W . On the other hand, the two middle plots of Figure 2 depict the covariance
embedding of the OCE method with no negative eigenvalues. The two bottom plots show 2
cross sections of the covariance embeddings from all 3 methods.

4.2 Cauchy covariance

Figure 3 shows the covariance embeddings resulting from the CME, SWCE and OCE pro-
cedures for the Cauchy covariance function (4.2) with parameters (4.4) and N = 200. The
transition region length for the upper right (SWCE) and middle left (OCE) covariance em-
beddings is 40, while for the middle left (SWCE) is 400. As in Figures 1–2, the covariance
embedding resulting from the standard CME method (upper left) is not smooth at the
boundary of periodization (2,836 negative eigenvalues). Note that non-smoothness here is
in the derivative (and not in the covariance itself as in Figures 1–2, top left) as indicated
through a highlighted contour plot which is spiky at the boundary.

In the top-right plot where the transition region length is 40, the SWCE method results
in an embedding with 24,720 negative eigenvalues. One possible explanation for this is a
very small range of the values of the given covariance function (the range of approximate
size 0.05 as seen from the vertical scale). That is, when overlapping windows are used in the
SWCE, the values of the covariance function are superimposed according to (2.19) and as
in the case considered here, can result in larger values over the transition region (the white
region in the middle of the top-right plot). In fact, the SWCE method still fails to produce

a covariance embedding with nonnegative eigenvalues even when Ñ = 600 (for example,

the smoothing covariance embedding with Ñ = 400 shown in the middle right plot has
28 negative eigenvalues). The OCE method, on the other hand, finds a feasible covariance

embedding even when Ñ = 240. The two bottom plots show 2 cross sections of the covariance
embeddings from all 3 methods.

4.3 Efficiency and related issues

We compare here the performance of the SWCE and OCE methods. Following Helgason et
al. (2014), define the efficiency of the embedding as

γ = γ(M) =
2N∗ − 1

M
, (4.5)
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where M = 2Ñ − 1 is the embedding size. For the SWCE method, N∗(≤ N) is the largest
size for which the covariance embedding has nonnegative eigenvalues (and hence for which
the field can be generated exactly on the grid G(N∗)). The efficiency γ satisfies 0 < γ ≤ 1
and the closer γ is to 1, the larger the grid G(N∗) one can simulate the field on.

For the OCE, the value N∗ can be defined in several ways. One possibility is to take
N∗ as the largest value for which the covariance embedding yields the objective function
smaller than some small value, for example, 10−5. Another possibility which we find more
informative, is to take N∗ as the largest value for which the OCE method results in a feasible
embedding (i.e. an embedding with nonnegative eigenvalues) – see Section 3.3 for a related
discussion. The value of N∗, however, needs to be supplemented by the value of the objective
function since the latter is not necessarily small. This choice of N∗ is used below, though
we also comment on what N∗ is expected under the first possibility above.

In Figures 4–5, we compare the embedding efficiency of the OCE (solid line) and the
SWCE (dashed line) methods. Figure 4 compares the embedding efficiency for the powered
exponential covariance (4.1) as a function of Mθ (this choice, rather than θ, allows a nicer
scale on the x−axis). The comparisons were done for 3 different values of α = 0.5, 1, 1.5
(corresponding to the three rows), θ = 0.05k, k = 1, . . . , 10, and embedding size M = 101.
The OCE method was implemented for µ = 2 (left column) and µ = 3 (right column), and
the optimum values of f in (3.11) are given below each point on the solid lines. The OCE
method performs significantly better than the SWCE in all cases considered (the solid lines
are located above the dashed ones). Note also that as α decreases, the performance of the
SWCE method gets worse, while the OCE method is only slightly affected.

Focusing on the OCE method, the plots illustrate nicely the tradeoff in the choice of µ
discussed in Section 3. Observe, for example, in the second (middle) row of Figure 4, that the
embedding efficiency γ has higher values for µ = 2 (left) than for µ = 3 (right). This means

that, for the given covariance r(n), n ∈ G̃(N), and the given size M , taking µ = 2 allows
the synthesis of the desired field on larger grids, than taking µ = 3. The synthesized fields,
however, will not necessarily be exact, since the optimum value of the objective function is
often non-negligible (e.g. for µ = 2 and Mθ = 20 the optimum value is 1). On the other
hand, the optimum values of the objective function f in (3.11) are lower for µ = 3 (right
plots) illustrating the fact that larger values of µ are more likely to yield exact embeddings.

Note also that, for example, all the values of the objective function in the top-right plot
(µ = 3) of Figure 4 are smaller than 10−5. If we defined the efficiency for the OCE method
requiring the objective function to be smaller than 10−5 at N∗, the resulting top-left plot
(µ = 2) of Figure 4 would naturally have a lower efficiency for the OCE method. We find,
however, that this efficiency would still be higher than the one for µ = 3 in the top-right
plot. The same observation applies to other plots concerning the cases µ = 2 and µ = 3.

Remark 4.1 A field X = {Xn, n ∈ G(N)} on grids of small size (N < 100) can be syn-
thesized exactly using Cholesky decomposition. However, even a fast variant of the method
developed by Dietrich (1993) has complexity O(N5), and thus is not suitable for the synthe-
sis of fields on grids of size larger than N = 100 (see Table 2 in Gneiting et al. (2006), p. 485,
for a detailed comparison of the computational requirements of Cholesky decomposition and
standard CME methods). On the other hand, the OCE method works well for grids of size
up to N = 1, 000. Note also that the speed of the OCE method varies depending on how
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strong the discontinuities of the covariance embedding are. For the Cauchy covariance of
Figure 3 for example, where N = 200 and M = 479, the OCE method for µ = 2.5 needs 150
seconds to produce a feasible covariance embedding.2 On the other hand, for the powered
exponential covariance function as in Figure 2 but for N = 60 andM = 215, the time needed
is almost the same (140 secs) even though the grid size is much smaller.

Remark 4.2 Regarding the computational requirements of the SWCE and OCE methods,
at first glance, the SWCE method seems to be much faster. As discussed above, however, the
SWCE method can break down for small transition regions. In fact, the minimum transition
region length needed for the method to work is not known in advance. This means that to
produce a feasible covariance embedding, it may be necessary to perform the SWCE method
multiple times, each time increasing the transition region length until a feasible covariance
embedding is produced. Although this trial and error approach can be optimized, it is still
likely that a large number of transition region lengths will need to be tested. In other words,
the OCE and SWCE methods should not be compared in speed solely for fixed transition
regions leading to feasible embeddings, where the SWCE method is likely to be faster (even
if the corresponding transition region is larger). One should also take into account the
uncertainty in the size of the transition region, where the OCE method is the favorite (in
allowing for smaller regions).

Finally, note again that the approach taken in this work stresses nonnegative eigenvalues
of covariance embeddings and focuses on the values of the objective function. Related to
this, it is natural to ask how our approach compares to the following simple procedure. If
the standard CME fails, a straightforward way to obtain a feasible covariance embedding r̃N
is by setting all negative eigenvalues of the CME covariance r̃I equal to 0. Variations of this
are suggested, for example, in Chan and Wood (1997), p. 167. Moreover, by using Parseval’s
identity, note that

argmin
r̃

||r̃I − r̃||2 = argmin
r̃

||g(r̃I)− g(r̃)||2 = r̃N ,

where || · ||2 denotes the Frobenius norm, g(r̃) = {gk(r̃), k ∈ G̃(N)} are the eigenvalues of the
covariance embedding r̃ and the minimum is taken over all covariance embeddings r̃ having
nonnegative eigenvalues. In other words, r̃N is the solution to our optimization problem
(3.2) when Ñ = N .

Indeed, when the transition region is empty (Ñ = N), the OCE method results in the

covariance embedding r̃O very close to r̃N . On the other hand, when Ñ > N, the OCE
method can result in significantly smaller optimal values of the objective function (which
moreover can be made smaller if desired). For example, in the case of the powered exponential
covariance function of Figure 1, the optimal value in the OCE method is less than 10−6, while
the above modification of the CME method leads to the Frobenius distance between r̃I and
r̃N equal to 24.

2All simulations were performed in an Intel Core i5 processor with 4GB of RAM.
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A Appendix

We first prove Lemma 3.1.
Proof of Lemma 3.1: First we write (3.1) as

r̃(n1, n2) =





r̃(n1, n2), if (n1, n2) ∈ Q1,

r̃(n1 −M,n2 −M), if (n1, n2) ∈ Q3,

r̃(n1, n2 −M), if (n1, n2) ∈ Q2,

r̃(n1 −M,n2), if (n1, n2) ∈ Q4,

(A.1)

where the regions Q1, Q2, Q3 and Q4 are given by

Q1 = {(n1, n2) : 0 ≤ n1 ≤ Ñ − 1, 0 ≤ n2 ≤ Ñ − 1},
Q2 = {(n1, n2) : 0 ≤ n1 ≤ Ñ − 1, Ñ ≤ n2 ≤M − 1},
Q3 = {(n1, n2) : Ñ ≤ n1 ≤ M − 1, Ñ ≤ n2 ≤M − 1},
Q4 = {(n1, n2) : Ñ ≤ n1 ≤ M − 1, 0 ≤ n2 ≤ Ñ − 1}

(A.2)

and partition the grid G(M). By using this partition, we rewrite the eigenvalues gk(r̃) in
(2.8) as

gk(r̃) =

(
∑

n∈Q1

+
∑

n∈Q2

+
∑

n∈Q3

+
∑

n∈Q4

)
r̃(n)e−i2πk·n/M . (A.3)

The first sum of (A.3) can be written as

∑

n∈Q1

r̃(n1, n2)e
−i2πk·n/M =

Ñ−1∑

n1=1

Ñ−1∑

n2=1

r̃(n1, n2)e
−i2πk·n/M +

Ñ−1∑

n2=1

r̃(0, n2)e
−i2πk2n2/M

+
Ñ−1∑

n1=1

r̃(n1, 0)e
−i2πk1n1/M + r̃(0, 0). (A.4)

Using the symmetry condition (3.1) and the property r̃(n) = r̃(−n), we have for the third
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sum of (A.3),

∑

n∈Q3

r̃(n1, n2)e
−i2πk·n/M =

M−1∑

n1=Ñ

M−1∑

n2=Ñ

r̃(n1, n2)e
−i2πk·n/M

=

−1∑

n1=−Ñ+1

−1∑

n2=−Ñ+1

r̃(n1 +M,n2 +M)e−i2πk·(n+M)/M

=

Ñ−1∑

n1=1

Ñ−1∑

n2=1

r̃(M − n1,M − n2)e
i2πk·n/M

=
Ñ−1∑

n1=1

Ñ−1∑

n2=1

r̃(n1 −M,n2 −M)ei2πk·n/M

=
Ñ−1∑

n1=1

Ñ−1∑

n2=1

r̃(n1, n2)e
i2πk·n/M .

(A.5)

By combining the relations (A.4) and (A.5), we get

(
∑

n∈Q1

+
∑

n∈Q3

)
r̃(n)e−i2πk·(n/M) = 2

Ñ−1∑

n1=1

Ñ−1∑

n2=1

r̃(n1, n2) cos

(
2π

(
k1n1

M
+
k2n2

M

))

+

Ñ−1∑

n1=1

r̃(n1, 0)e
−i2πk1n1/M +

Ñ−1∑

n2=1

r̃(0, n2)e
−i2πk2n2/M + r̃(0, 0). (A.6)

Similar calculations for the second and fourth sums of (A.3) yield

(
∑

n∈Q2

+
∑

n∈Q4

)
r̃(n)e−i2πk·(n/M) = 2

Ñ−1∑

n1=1

M−1∑

n2=Ñ

r̃(n1, n2) cos

(
2π

(
k1n1

M
+
k2n2

M

))

+

Ñ−1∑

n1=1

r̃(n1, 0)e
i2πk1n1/M +

Ñ−1∑

n2=1

r̃(0, n2)e
i2πk2n2/M . (A.7)

Combining (A.6) and (A.7) yields

gk(r̃) = 2

Ñ−1∑

n1=1

M−1∑

n2=1

r̃(n1, n2) cos

(
2π

(
k1n1

M
+
k2n2

M

))

+2
Ñ−1∑

n1=1

r̃(n1, 0) cos

(
2πk1n1

M

)
+ 2

Ñ−1∑

n2=1

r̃(0, n2) cos

(
2πk2n2

M

)
+ r̃(0, 0). (A.8)

The first two terms on the right-hand side of (A.8) give ck(n) in (3.8) for n1 6= 0, and the
last two terms give ck(n) in (3.8) for n1 = 0. �
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For the proofs of Lemmas 3.2 and 3.3 we first obtain an expression for the adjoint operator
AT of A similar to (3.7). More specifically, we will show that AT satisfies

[AT r̃](k) =
∑

n∈G+(M)

cn(k)r̃(n), k ∈ G+(M). (A.9)

Note that the only difference between the two operators A and AT is that ck(n) in the
expression (3.7) of A is interchanged with cn(k) in the expression (A.9) of AT .

We will show (A.9) by viewing A and AT as matrices. To make the transition to a matrix
point of view, let m be the number of points in the grid G+(M) and consider two arbitrary
fixed bijective mappings φi(u) : {1, . . . , m} → G+(M), i = 1, 2, for rearranging the values
of the fields r̃(n) and ck(n) in the relation (3.7) into vectors. More specifically, let

n = φ1(j) and k = φ2(l), j, l = 1, . . . , m,

for n, k ∈ G+(M). Then, we can interpret the two-dimensional field r̃(n), n ∈ G+(M),
as a column vector r̃v whose jth entry is r̃(φ1(j)). Similarly, for each k, the coefficients
ck(n), n ∈ G+(M), can be viewed as a row vector aTl whose jth entry is cφ2(l)(φ1(j)). This
allows us to rewrite the relation (3.7) as

[Ar̃](k) =
∑

n∈G+(M)

ck(n)r̃(n) =

m∑

j=1

aTl (j)r̃(φ1(j)) = aTl r̃v = (Ar̃v)l, (A.10)

where A in the last equation is viewed as a matrix with rows aTl , l = 1, . . . , m, and (·)l
denotes the lth element of a vector. The subscript v in r̃v is to avoid a possible confusion
regarding which point of view is adopted, as Ar̃ will denote the action of the linear operator
A on a field r̃, whereas Ar̃v is the usual matrix-vector product.

Next, let bTl , l = 1, . . . , m, denote the rows of the transpose matrix AT of A. The jth
entry of bTl satisfies

bTl (j) = aTj (l) = cn(k), for n = φ1(j) and k = φ2(l).

Then, arguing as for (A.10) but in reverse order, we have

(AT r̃v)l = bTl r̃v =
m∑

j=1

bTl (j)r̃(φ1(j)) =
∑

n∈G+(M)

cn(k)r̃(n), (A.11)

which yields (A.9).
We are now ready to prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2: In view of the relations (3.7) and (A.9), it is enough to show that
the weights cn(k) satisfy

cn(k) = ck(n)− cos(2πk2n2/M)1{k1=0,n1 6=0} + cos(2πk2n2/M)1{k1 6=0,n1=0}. (A.12)

To show that (A.12) holds, we simply use (3.8) and compare the values of ck(n) and cn(k)
for the four cases of the values of n and k shown in Tables 1–2. �
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ck(n) n1 6= 0 n1 = 0

k1 6= 0 2 cos(2πk · (n/M)) cos(2πk2n2/M)
k1 = 0 2 cos(2πk2n2/M) cos(2πk2n2/M)

Table 1: The values of ck(n)

cn(k) n1 6= 0 n1 = 0

k1 6= 0 2 cos(2πk · (n/M)) 2 cos(2πk2n2/M)
k1 = 0 cos(2πk2n2/M) cos(2πk2n2/M)

Table 2: The values of cn(k)

Proof of Lemma 3.3: Recall from the relation (3.18), that H and b are the Hessian and
negative gradient of the function f(x) = tf(x)+φ(x), where f and φ are given in (3.11) and
(3.12), respectively. To show that H and b satisfy the relations (3.22), we will consider the
functions f and φ separately.

By using (3.7) and (A.10), we can express the function φ(r̃) in (3.12) from the vector
perspective as

φ(r̃v) = −
m∑

l=1

log(aTl r̃v). (A.13)

By using (A.10), we can also write the field d(k) in (3.20) as a vector dv whose lth entry
dv(l) is d(φ2(l)) = −(aTl r̃v)−1. Then, the gradient and Hessian of φ are given by

∇φ(r̃v) =
m∑

l=1

1

−aTl r̃v
al = ATdv, (A.14)

∇2φ(r̃v) =

m∑

l=1

1

(aTl r̃v)
2
ala

T
l = ATD2A, (A.15)

where D = diag(dv). As in the case of the operator/matrix A, the diagonal matrix D =
diag(dv) is the matrix analogue of the operator D defined in (3.21). Indeed, let y = [Au](k),
for some two dimensional field u = {u(n), n ∈ G+(M)}. Let also uv and yv be the vectors
whose jth elements are u(φ1(j)) and a

T
j uv, respectively. Then, the action of D on y yields

[Dy](k) := d(k) · y(k)
= d(φ2(l)) · [Au](φ2(l))
= dv(l)a

T
l uv,

where the last term is the lth element of the matrix Dyv.
Next, we calculate the gradient and Hessian of f in (3.11). Letting sv be a vector whose

jth entry is s(φ1(j)), we can write f in a quadratic form as

f(r̃v) = r̃TvWr̃v − 2sTv r̃v + rTvWrv. (A.16)
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Since the last term in the relation (A.16) is a constant, minimizing f is equivalent to mini-
mizing the function

f̃0(r̃v) =
1

2
r̃TvWr̃v − sTv r̃v. (A.17)

The gradient and Hessian of f̃0 are given by

∇f̃0(r̃v) =Wr̃v − sv, (A.18)

∇2f̃0(r̃v) = W. (A.19)

Finally, by combining the relations (A.14)–(A.15) and (A.18)–(A.19), we get

∇f(r̃v) = t(Wr̃v − sv) + ATdv,

∇2f(r̃v) = tW + ATD2A,

which are the vector equivalents of the relations (3.22). �

B Figures and tables

23



n1

n
2

Standard embedding

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n1

n
2

Optimal embedding µ = 2.0

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

n1

r̃
(n

1
,
5
0
)

 

 

Standard

SWCE

OCE

n1

n
2

Smoothing embedding

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n1

n
2

Optimal embedding µ = 3.0

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

n1

r̃
(n

1
,
1
9
0
)

 

 

Standard

SWCE

OCE

Figure 1: Plots for the anisotropic covariance of the powered exponential form in (4.1)
with W = W1 in (4.3), N = 200 and M = 479. Top left: Standard embedding. Top
right: Smoothing windows embedding with 50 negative eigenvalues. Middle left: Optimal
embedding with µ = 3 and min f = 6.7 · 10−7. Middle right: Optimal embedding with
µ = 1.5 and min f = 8 · 10−7. Bottom plots: Cross sections of standard CME, SWCE and
OCE (µ = 1.5) for n2 = 50, 190.
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Figure 2: Plots for the anisotropic covariance of the powered exponential form in (4.1)
with W = W2 in (4.3) and N = 100 and M = 359. Top left: Standard embedding. Top
right: Smoothing windows embedding with 116 negative eigenvalues. Middle left: Optimal
embedding with µ = 1.5, min f = 5 · 10−6, and no negative eigenvalues. Middle right:
Optimal embedding with µ = 3, min f = 4 · 10−6, and no negative eigenvalues. Bottom
plots: Cross sections of standard CME, SWCE and OCE (µ = 1.5) for n2 = 50, 170.
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Figure 3: Plots for the isotropic covariance of the Cauchy form (4.2) with parameters (4.4)
N = 200. Top left: Standard embedding (2,836 negative eigenvalues). Top right: Smoothing

windows embedding with transition region Ñ − N = 40 and 24,720 negative eigenvalues.
Middle left: Optimal embedding with µ = 2.5, min f = 7 ·10−5, and no negative eigenvalues.
Middle right: Smoothing embedding with transition region Ñ −N = 200 and 136 negative
eigenvalues. Bottom plots: Cross sections of standard CME, SWCE and OCE (µ = 1.5) for

n2 = 50, 250 and Ñ −N = 200.
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Figure 4: Efficiency values of SWCE (dashed lines) and OCE (solid lines) methods for
the powered exponential covariance function (4.1) with θ = 0.05k, k = 1 . . . , 10 and α =
0.5, 1, 1.5. Left: OCE implemented with µ = 2. Right: OCE implemented with µ = 3. The
tolerance ǫ in the PLB method is equal to 10−5 in all cases.
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Figure 5: Efficiency values of SWCE (dashed lines) and OCE (solid lines) methods for
the Cauchy covariance (4.2) with θ = 0.001 and α = 0.5, 1, 1.5. For the first row β =
0.1, 0.2, . . . , 1, for the second row β = 1, 2, . . . , 10 and for the third row β = 10, 20, . . . , 100.
Left: OCE implemented with µ = 2. Right: OCE implemented with µ = 3. The tolerance ǫ
in the PLB method is equal to 10−5 in all cases.

28



References

Bertsimas, D. & Tsitsiklis, J. N. (1997), Introduction to Linear Optimization, Vol. 6, Athena
Scientific Belmont, MA.

Boyd, S. & Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press,
Cambridge.

Chan, G. & Wood, A. T. (1997), ‘An algorithm for simulating stationary Gaussian random
fields’, Applied Statistics, Algorithm Section 46(1), 171–181.

Chan, G. & Wood, A. T. (1999), ‘Simulation of stationary Gaussian vector fields’, Statistics
and computing 9(4), 265–268.

Craigmile, P. F. (2003), ‘Simulating a class of stationary Gaussian processes using the Davies-
Harte algorithm, with application to long memory processes’, Journal of Time Series
Analysis 24(5), 505–511.

Davies, R. B. & Harte, D. S. (1987), ‘Tests for Hurst effect’, Biometrika 74(1), 95–101.

Dietrich, C. & Newsam, G. (1993), ‘A fast and exact method for multidimensional Gaussian
stochastic simulations’, Water Resources Research 29(8), 2861–2869.

Dietrich, C. R. (1993), ‘Computationally efficient Cholesky factorization of a covariance ma-
trix with block Toeplitz structure’, Journal of Statistical Computation and Simulation
45(3-4), 203–218.

Forsgren, A., Gill, P. E. & Wright, M. H. (2002), ‘Interior methods for nonlinear optimiza-
tion’, SIAM Review 44(4), 525–597 (2003).
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