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Abstract

The notion of multivariate long-range dependence is reexamined here from the perspectives
of time and spectral domains. The role of the so-called phase parameters is clarified and stressed
throughout. In particular, examples of causal (one-sided) representations of multivariate long-
range dependent time series with general phase parameters are constructed. A multivariate
extension of FARIMA series is introduced with explicit formulae for its autocovariance function.

1 Introduction

Long-range dependent (LRD, in short) time series models have been studied extensively in theory
and have been popular in a wide range of applications (Beran (2013), Doukhan Oppenheim and
Taqqu (2003), Giraitis, Koul and Surgailis (2012), Park and Willinger (2000), Robinson (2003)).
They are defined as (second-order) stationary time series models satisfying one of the following
non-equivalent conditions. In the time domain, the autocovariance function γ(h) = Cov(X0,Xh)
of a LRD time series {Xn}n∈Z is such that

γ(k) = L1(k)k
2d−1, as k → ∞, (1.1)

where d ∈ (0, 1/2) is the long-range dependence (LRD) parameter and L1 is a slowly varying
function at infinity. In the spectral domain, the spectral density function f(λ) of {Xn}n∈Z is such
that

f(λ) = L2(λ)λ−2d, as λ ↓ 0, (1.2)

where L2 is a slowly varying function at 0. Another common way to define a LRD time series is
through a causal (one-sided) linear representation

Xn = µ+
∞∑

k=0

ψkεn−k, (1.3)

where {εn}n∈Z is a white noise series, µ is a constant mean and the sequence {ψk}k≥0 satisfies

ψk = L3(k)k
d−1, as k → ∞, (1.4)
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where L3 is a slowly varying function at infinity.
In this work, we are interested in the notion of LRD for multivariate time series, that

is, R
p-valued time series Xn = (X1

n, . . . ,X
p
n)′, where prime indicates transpose. Second-order

stationary multivariate series are now characterized by matrix-valued autocovariance function
γ(h) = EX0X

′
h −EX0EX ′

h and matrix-valued spectral density f(λ). In the multivariate case, γ(h)
does not necessarily satisfy the symmetry (time-reversibility) condition γ(h) = γ(−h) and, more-
over, f(λ) can have complex-valued entries in general (Hannan (1970), Reinsel (1997), Lütkepohl
(2005)). Several forms of multivariate LRD, not surprisingly, have already been considered in the
literature. The goal of this work is to clarify this notion. As will be seen below, there are a number
of new interesting issues that arise in the multivariate but not in the univariate case, and which
have not been studied in greater detail yet.

The most general form of the bivariate LRD appears in Robinson (2008) who supposed that
the spectral density matrix satisfies

f(λ) ∼

(
ω11|λ|

−2d1 ω12|λ|
−(d1+d2)e−isign(λ)φ

ω21|λ|
−(d1+d2)eisign(λ)φ ω22|λ|

−2d2

)
, as λ→ 0, (1.5)

where ω11, ω12, ω21, ω22 ∈ R, d1, d2 ∈ (0, 1/2) and φ ∈ (−π, π]. The parameter φ is called a phase
parameter and is unique to the bivariate LRD case (see also Section 2 below). It controls asymmetry
(time non-reversibility) in the series at large time lags. Many results of this work will be related
directly to this parameter and its role. The definition of LRD with

φ = 0 (1.6)

was considered in Lobato (1999), Velasco (2003), Marinucci and Robinson (2003), Christensen and
Nielsen (2006), Nielsen (2004, 2007). The value φ = 0 is associated with LRD time series which
are symmetric (time-reversible). The case of

φ =
π

2
(d1 − d2) (1.7)

is another special case and was considered in Lobato (1997), Robinson (2002, 2008), Shimotsu
(2007), Nielsen (2011), Nielsen and Frederiksen (2011). For example, a natural extension of the
FARIMA(0, d, 0) series to the bivariate case as

(
(I −B)d1 0

0 (I −B)d2

)
Xn = εn, (1.8)

where {εn} is a bivariate white noise and B is the backshift operator, corresponds to φ given by
(1.7). The case of general φ is considered in Robinson (2008) as indicated above, and without
referring to φ explicitely in Robinson (1995). Multivariate LRD models also appear in Robinson
(1994), Chan and Terrin (1995), Marinucci and Robinson (2001, 2003), Robinson and Yajima
(2002), Chen and Hurvich (2003, 2006) in the context of fractional cointegration, and in Achard,
Bassett, Meyer-Lindenberg and Bullmore (2008), Wendt, Scherrer, Abry and Achard (2009) in the
context of fractal connectivity.

We contribute to the understanding of the notion of multivariate LRD in the following three
ways. First, we extend the definition (1.5) to the multivariate case and consider its analogue in the
time domain (as in (1.1)) and relationships between them. This contribution is somewhat standard,
but also necessary to set a proper foundation for dealing with multivariate LRD. Again, much of
the discussion will focus on the role played by the phase parameters (φ in (1.5) in the bivariate
case). In the bivariate case, similar results can be found in Robinson (2008).
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Our second contribution is more original. It concerns linear representations of multivariate LRD
series of the form

Xn =
∞∑

k=−∞

Ψkεn−k, (1.9)

where Ψk are p × p matrices and {εn} is a p-variate white noise. Even more specifically, we are
interested in causal (one-sided) representations, that is, (1.9) with Ψk = 0 when k < 0. It is
not too difficult to construct non-causal (two-sided) representations (1.9) having general phase
parameters in the definition of LRD by having Ψk decay as suitable power-law functions as k → ∞
and k → −∞. But it is not obvious how to construct such causal representations. For example,
taking Ψk to behave as a power-law function in a causal representation leads necessarily to the
phase parameters π

2 (dj1 −dj2), where dj1 , dj2 are the LRD parameters of component series (Section
3 below).

We show that causal multivariate LRD series of general phase can be constructed taking the
elements of Ψk as linear combinations of, what we will call, trigonometric power-law coefficients

ca,bk = k−b cos(2πka),

sa,bk = k−b sin(2πka), k ≥ 0, (1.10)

where 0 < a < 1 and 1
2 < b ≤ 1 − 1

2a. (By convention, 0p = 0 for p ∈ R, so that ca,b0 = sa,b0 = 0.)
The use of such coefficients can be traced back at least to Wainger (1965). What makes them
special and relevant for LRD is that their discrete Fourier transform satisfies, for example,

∞∑

k=0

ca,bk e−ikλ ∼ c1|λ|
−

1−b−a/2
1−a ei(c2|λ|

− a
1−a −π

4
), as λ ↓ 0, (1.11)

where c1, c2 are two non-zero constants (Wainger (1965) and Appendix B below). Thus, even in
the univariate case, the time series

Xn =
∞∑

k=0

ca,bk εn−k (1.12)

is LRD (cf. (1.2)) with the LRD parameter

d =
1 − b− a/2

1 − a
. (1.13)

Though the trigonometric power-law coefficients can be used to construct new univariate and
multivariate causal LRD series, their statistical inference and practical usefulness remain to be
explored in the future.

Lastly and third, we provide a natural multivariate extension of FARIMA(0, d, 0) having a
general phase. As indicated above, the extension (1.8) of FARIMA(0, d, 0) series to the bivariate
case has necessarily the phase parameter φ = (d1−d2)π/2. For example, a bivariate extension with
a general phase can be obtained with

Xn =

(
(I −B)−d1 0

0 (I −B)−d2

)
Q+εn +

(
(I −B−1)−d1 0

0 (I −B−1)−d2

)
Q−εn, (1.14)

where Q+, Q− are 2 × 2 matrices with real-valued entries. We provide explicit formulas for the
autocovariance functions of this extension, including the multivariate case, in Section 5.

The structure of the paper is as follows. The definitions of multivariate LRD in the time and
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spectral domains are given in Section 1. Non-causal representations of multivariate LRD series are
studied in Section 3. Section 4 concerns causal linear representations. Multivariate FARIMA series
are considered in Section 5. Some technical proofs are moved to Appendix A, and the behavior of
the Fourier series of the trigonometric power-law coefficients (1.10) is presented in Appendix B.

2 Definitions in the time and spectral domains

We begin with the definitions of multivariate LRD in the time and spectral domains, extending
conditions (1.1) and (1.2). We shall suppose for simplicity that all slowly varying functions be-
have asymptotically as constants. This is the relevant case for statistical inference. Moreover,
these slowly varying functions would appear below in a matrix form which, along a matrix regular
variation, is only now receiving a closer look (e.g. Meerschaert and Scheffler (2013)).

The definitions below use the following notation. For a > 0 and a diagonal matrix M =
diag(m1, . . . ,mp), we write aM = diag(am1 , . . . , amp). The autocovariance matrix function of a
second-order stationary series X = {Xn}n∈Z is defined as γ(h) = (γjk(h))j,k=1,...,p = EX0X

′
h −

EX0EX ′
h, h ∈ Z, and the corresponding spectral density matrix function, if it exists, is denoted

f(λ) = (fjk(λ))j,k=1,...,p. For a matrix A, A∗ stands for its Hermitian transpose.

Definition 2.1 (Time domain) A multivariate (p-vector) second-order stationary time series is
LRD if its autocovariance matrix function satisfies:

γ(n) = nD−(1/2)IR(n)nD−(1/2)I =
(
Rjk(n)n(dj+dk)−1

)
j,k=1,...,p

, (2.1)

where D = diag(d1, . . . , dp) with dj ∈ (0, 1/2), j = 1, . . . , p, and R(u) = (Rjk(u))j,k=1,...,p is an
R
p×p-valued function satisfying

R(u) ∼ R = (Rjk)j,k=1,...,p, as u→ +∞, (2.2)

for some p× p matrix R, where Rjk ∈ R.

Definition 2.2 (Spectral domain) A multivariate (p-vector) second-order stationary time series is
LRD if its spectral density matrix function satisfies

f(λ) = λ−DG(λ)λ−D
∗

=
(
Gjk(λ)λ−(dj+dk)

)
j,k=1,...,p

, (2.3)

where D = diag(d1, . . . , dp) with dj ∈ (0, 1/2), j = 1, . . . , p, and G(λ) = (Gjk(λ))j,k=1,...,p is a
C
p×p-valued, Hermitian symmetric, non-negative definite matrix function satisfying

G(λ) ∼ G = (Gjk)j,k=1,...,p =
(
gjke

iφjk

)
j,k=1,...,p

, as λ ↓ 0, (2.4)

for some p×p, Hermitian symmetric, non-negative definite matrix G, where gjk ∈ R, φjk ∈ (−π, π].

A number of comments regarding Definitions 2.1 and 2.2 are in place. First, note that the
component series {Xj

n}n∈Z, j = 1, . . . , p, of a multivariate LRD series are LRD with parameters
dj , j = 1, . . . , p. (Note that φjj = 0 since the matrix G is Hermitian symmetric and hence has
real-valued entries on the diagonal.) Another possibility would be to require that at least one of the
component series {Xj

n}n∈Z is LRD. This could be achieved by assuming in (2.3) that dj ∈ [0, 1/2),
j = 1, . . . , p, and that at least one dj > 0. But note that such assumption is not appropriate in
(2.1).
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Second, note that the structure of (2.3) is such that f(λ) is Hermitian and non-negative definite.
D∗ appearing in (2.3) can be replaced by D since it is diagonal and consists of real-valued entries.
We write D∗ to make the non-negative definiteness of f(λ) more evident. The entries φjk in (2.4)
are referred to as phase parameters. Their role will become more apparent in Proposition 2.1 below
where Definitions 2.1 and 2.2 are compared.

There are two common but slightly different ways to represent the phase parameters. Note that
a complex number z = z1 + iz2 ∈ C, z1, z2 ∈ R, can be represented as (assuming z1 6= 0 in the
second relation below and denoting the principle value of the argument by Arg(z) ∈ (−π, π])

z = |z|eiArg(z) (2.5)

=
√
z2
1 + z2

2e
i(arctan(

z2
z1

)+πsign(z2)1{z1<0})
= sign(z1)

√
z2
1 + z2

2e
i arctan(

z2
z1

)

= z1

√
1 +

z2
2

z2
1

e
i arctan(

z2
z1

)
= z1

√
1 + tan2(arctan

z2
z1

)e
i arctan(

z2
z1

)

=
z1

cosφ
eiφ, with φ = arctan(

z2
z1

). (2.6)

The two specifications of gjk and the phase φjk correspond to (2.5) (e.g. Brockwell and Davis
(2009), p. 422) and (2.6) (e.g. Hannan (1970), pp. 43–44):

gjk = |Gjk|, φjk = Arg(Gjk), (2.7)

gjk =
<Gjk
cosφjk

, φjk = arctan
=Gjk
<Gjk

. (2.8)

Note that, in the case (2.8), φjk ∈ (−π/2, π/2).
It should also be noted that the phase parameters are unique to the LRD case. Taking

∞∑

n=−∞

|γ(n)| <∞ (2.9)

for the definition of short-range dependent (SRD) series, we have

f(λ) =
1

2π

∞∑

n=−∞

e−inλγ(n). (2.10)

In particular, f(0) = (2π)−1
∑∞

n=−∞ γ(n) consists of real-valued entries, and

f(λ) ∼ G (= f(0)), as λ→ 0, (2.11)

where G consists of real-valued entries. The relation (2.11) corresponds to (2.3)−(2.4) with dj = 0,
j = 1, . . . , p, and all phase parameters φjk = 0.

Third, the squared coherence function

H2
jk(λ) =

|fjk(λ)|2

fjj(λ)fkk(λ)

satisfies 0 ≤ H2
jk(λ) ≤ 1. As λ→ 0, this translates into

0 ≤ lim
λ→0

|Gjk|
2λ−2(dj+dk)

Gjjλ−2djGkkλ−2dk
=

|Gjk|
2

GjjGkk
≤ 1 (2.12)
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and also explains why the choice of λ−(dj+dk) is natural for the cross-spectral density fjk(λ).
Fourth, note also that (2.3) is considered for λ > 0, λ → 0. Since f is Hermitian symmetric,

(2.3)−(2.4) can be replaced by

fjk(λ) = Gjk(λ)|λ|−(dj+dk) ∼ gjke
iφjksign(λ)|λ|−(dj+dk), as λ→ 0, (2.13)

where Gjk(−λ) = Gjk(λ)∗, if both positive and negative λ’s are considered. (Note that since G is
Hermitian symmetric, we have gjk = gkj .)

Proposition 2.1 below compares Definitions 2.1 and 2.2. It uses the notion of a quasi-monotone
slowly varying function whose definition is recalled in Appendix A. The proof of the proposition
can also be found in the appendix. As usual, Γ(·) denotes the gamma function.

Proposition 2.1 (i) Suppose the component functions Rjk are quasi-monotone slowly varying.
Then, Definition 2.1 implies Definition 2.2 with

Gjk =
Γ(dj + dk)

2π

{
(Rjk +Rkj) cos(

π

2
(dj + dk)) − i(Rjk −Rkj) sin(

π

2
(dj + dk))

}
(2.14)

in the relation (2.4). In the specification (2.8), for example, Gjk = gjke
iφjk with

φjk = − arctan
{Rjk −Rkj
Rjk +Rkj

tan(
π

2
(dj + dk))

}
, (2.15)

gjk =
Γ(dj + dk)(Rjk +Rkj) cos(π2 (dj + dk))

2π cos(φjk)
. (2.16)

(ii) Suppose the component functions <Gjk, =Gjk are quasi-monotone slowly varying. Then,
Definition 2.2 implies Definition 2.1 with

Rjk = 2Γ(1 − (dj + dk))
{
<Gjk sin(

π

2
(dj + dk)) −=Gjk cos(

π

2
(dj + dk))

}
(2.17)

in the relation (2.2).

The relation (2.15) sheds light on the phase parameters φjk. Note that φjk = 0 if and only
if Rjk = Rkj. In view of (2.1)–(2.2), the last property corresponds to γjk(n) being symmetric
as n → ∞ and n → −∞, that is, γjk(−n) ∼ γjk(n), as n → ∞. (We used here the fact that
γ(−n) = γ(n)′ and hence γjk(−n) = γkj(n).)

3 Non-causal linear representations

We are interested here in linear representations (1.9) of multivariate LRD time series. In the next
result, we show that linear time series (1.9) with power-law coefficients Ψk in the asymptotic sense
as k → ∞ and k → −∞, are multivariate LRD. We argue at the end of the section that such
non-causal time series can lead to general phase parameters.

Proposition 3.1 Let {εn}n∈Z be an R
p-valued white noise, satisfying Eεn = 0 and Eεnε

′
n = I. Let

also {Ψm = (ψjk,m)j,k=1,...,p}m∈Z be a sequence of real-valued matrices such that

ψjk,m = Ljk(m)|m|dj−1, m ∈ Z, (3.1)

where dj ∈ (0, 1/2) and L(m) = (Ljk(m))j,k=1,...,p is an Rp×p-valued function satisfying

L(m) ∼ A+, as m→ ∞, and L(m) ∼ A−, as m→ −∞, (3.2)
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for some p× p real-valued matrices A+ = (α+
jk)j,k=1,...,p, A

− = (α−
jk)j,k=1,...,p. Then, the time series

Xn given by a linear representation

Xn =

∞∑

m=−∞

Ψmεn−m, (3.3)

is LRD in the sense of Definition 2.1 with

Rjk =
Γ(dj)Γ(dk)

Γ(dj + dk)

(
c1jk

sin(πdj)

sin(π(dj + dk))
+ c2jk + c3jk

sin(πdk)

sin(π(dj + dk))

)
, (3.4)

where
c1jk =

∑p
t=1 α

−
jtα

−
kt = (A−(A−)∗)jk,

c2jk =
∑p

t=1 α
−
jtα

+
kt = (A−(A+)∗)jk,

c3jk =
∑p

t=1 α
+
jtα

+
kt = (A+(A+)∗)jk.

(3.5)

The proof of Proposition 3.1 can be found in Appendix A. Entries of the matrices A+ and A−

in (3.2) are allowed to be zero. In particular, the case

ψjk,m = ljk(m)|m|djk−1, m ∈ Z, (3.6)

with possibly different djk ∈ (0, 1/2) across k for fixed j and ljk(m) ∼ β±jk with β±jk ∈ R, as
m→ ±∞, can be expressed as (3.1) with dj = maxk djk.

Note also that the time series (3.3) is proved to be LRD in the sense of Definition 2.1. In view
of Proposition 2.1, (i), the time series is also expected to be LRD in the sense of Definition 2.2
with Gjk given by (2.14). To calculate Gjk, note that

Rjk +Rkj =
Γ(dj)Γ(dk)

Γ(dj + dk)

(
c1jk

sin(πdj) + sin(πdk)

sin(π(dj + dk))
+ c2jk + c2kj + c3jk

sin(πdk) + sin(πdj)

sin(π(dj + dk))

)

=
Γ(dj)Γ(dk)

Γ(dj + dk)

(
c1jk

cos(π2 (dj − dk))

cos(π2 (dj + dk))
+ c2jk + c2kj + c3jk

cos(π2 (dj − dk))

cos(π2 (dj + dk))

)
,

where we used basic trigonometric identities and the facts that c1jk = c1kj, c
3
jk = c3kj. Hence,

Γ(dj + dk)(Rjk +Rkj) cos(
π

2
(dj + dk))

= Γ(dj)Γ(dk)
(
(c1jk + c3jk) cos(

π

2
(dj − dk)) + (c2jk + c2kj) cos(

π

2
(dj + dk))

)
. (3.7)

Similarly, one can show that

Γ(dj + dk)(Rjk −Rkj) sin(
π

2
(dj + dk))

= Γ(dj)Γ(dk)
(
(c1jk − c3jk) sin(

π

2
(dj − dk)) + (c2jk − c2kj) sin(

π

2
(dj + dk))

)
. (3.8)

Combining (3.7) and (3.8), the relation (2.14) now yields

Gjk =
Γ(dj)Γ(dk)

Γ(dj + dk)

(
(c1jk + c3jk) cos(

π

2
(dj − dk)) + (c2jk + c2kj) cos(

π

2
(dj + dk))

+ i(c1jk − c3jk) sin(
π

2
(dj − dk)) + i(c2jk − c2kj) sin(

π

2
(dj + dk))

)

=
Γ(dj)Γ(dk)

Γ(dj + dk)

(
c1jke

iπ
2
(dj−dk) + c3jke

−iπ
2
(dj−dk) + c2jke

iπ
2
(dj+dk) + c2kje

−iπ
2
(dj+dk)

)
. (3.9)
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Setting

F = diag
(
Γ(d1)e

iπ
2
d1 , . . . ,Γ(dp)e

iπ
2
dp

)
(3.10)

and using (3.5), the relation (3.9) can also be expressed as

Gjk =
Γ(dj)Γ(dk)

Γ(dj + dk)

(
(A−(A−)∗)jke

iπ
2
(dj−dk) + (A+(A+)∗)jke

−iπ
2
(dj−dk)

+ (A−(A+)∗)jke
iπ
2
(dj+dk) + (A+(A−)∗)jke

−iπ
2
(dj+dk)

)

=
1

2π

(
(FA−)(FA−)∗ + (F ∗A+)(F ∗A+)∗ + (FA−)(F ∗A+)∗ + (F ∗A+)(FA−)∗

)
jk

=
1

2π

(
(F ∗A+ + FA−)(F ∗A+ + FA−)∗

)
jk
. (3.11)

The relation (3.11) can also be derived informally as follows. It is expected that the time series
(3.3) has spectral density

1

2π

(
∞∑

m=−∞

Ψme
−imλ

)(
∞∑

m=−∞

Ψ∗
me

imλ

)
. (3.12)

Be Lemma A.1 in Appendix A, it is expected that

∞∑

m=−∞

Ψme
−imλ =

∞∑

m=1

Ψme
−imλ +

∞∑

m=0

Ψ−me
imλ ∼ λ−D

(
F ∗A+ + FA−

)
, (3.13)

which, when combined with (3.12), is consistent with (3.11).
Finally, note that, for fixed dj ’s and G = (Gjk)j,k=1,...,p, we can find matrices A+, A−, so that

(3.11) holds. Indeed, since G is Hermitian symmetric and non-negative definite, we have G = WW ∗

for some matrix W . The real matrices A+, A− can now be found by setting (2π)−1(F ∗A++FA−) =
W . (Note that, since e−iπd/2 and eiπd/2 are linearly independent, there are real α+ and α− such
that e−iπd/2α+ + eiπd/2α− = y for any y ∈ C.) In particular, any phase φjk can be obtained with
a suitable choice of A+, A−.

4 Causal linear representations

In this section, we focus on causal linear representations of multivariate LRD series, that is, the rep-
resentations (1.9) with Ψk = 0 for k < 0. As shown in Section 4.1 below, causal representations with
power-law coefficients can only have very special phase parameters. Causal representations with
zero and more general phases, based on trigonometric power-law coefficients (1.10), are considered
in Sections 4.2 and 4.3.

4.1 The special case of power-law coefficients

One consequence of the results of Section 3 is that the causal representations of multivariate LRD
series with power-law coefficients can only have very special phase parameters. The next result
restates Proposition 3.1 in the causal case.
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Corollary 4.1 Let {εn}n∈Z and {Ψm}m∈Z be as in Proposition 3.1 but with Ψm = 0 for m < 0.
Then, the time series Xn given by a causal linear representation

Xn =
∞∑

m=0

Ψmεn−m, (4.1)

is LRD in the sense of Definition 2.1 with

Rjk =
Γ(dj)Γ(dk)

Γ(dj + dk)

sin(πdk)

sin(π(dj + dk))
(A+(A+)∗)jk. (4.2)

Arguing as for (3.11), the relation (4.2) yields

Gjk =
Γ(dj)Γ(dk)

2π
(A+(A+)∗)jke

−iπ
2
(dj−dk) (4.3)

and hence the phase parameters

φjk = −
π

2
(dj − dk). (4.4)

This can also be deduced from (3.12)–(3.13).

4.2 The case of zero phases

The causal time series (4.1) with power-law coefficients leads necessarily to the phase parameters
(4.4). What coefficient matrices Ψk could one take to obtain general phases? (Such coefficient
matrices exist in theory by the multivariate version of the Paley-Wiener theorem.) It is instructive
to begin the discussion with the case of zero phases (that is, the symmetric case), before moving
to the general case.

Informally, in the case of zero phases, we are looking for coefficient matrices Ψm such that, as
λ ↓ 0, (

∞∑

m=0

Ψme
−imλ

)(
∞∑

m=0

Ψ∗
me

imλ

)
∼ λ−DGλ−D

∗
, (4.5)

where G is real-valued (and we included the factor 1/2π on the left-hand side of (3.12) into Ψm’s).
This relation would follow from

(
∞∑

m=0

ψjk,me
−imλ

)(
∞∑

m=0

ψj′k′,me
imλ

)
∼ cjk,j′k′λ

−(dj+dj′ ) (4.6)

with real cjk,j′k′ . This in turn would suggest to look for coefficients ψm such that

∞∑

m=0

ψme
−imλ ∼ cλ−d (4.7)

with real c. Note, however, that (4.7) with real c is not plausible. Writing cλ−d = cid(iλ)−d the
behavior of (iλ)−d can be captured by taking power-law coefficients. It is, however, impossible to
recover id through a Fourier series of real coefficients. In fact, (4.7) is only expected with complex
c = Ci−d, corresponding to power-law coefficients ψm. But again, power-law coefficients lead to
zero phase only when the component LRD parameters are all identical.
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Instead of (4.7), another possibility is to look for coefficients ψm such that

∞∑

m=0

ψme
−imλ ∼ cλ−deia(λ), (4.8)

where a(λ) → ∞, as λ ↓ 0. Moreover, a(λ) should be flexible enough in its relation to d. The idea
here is that the complex-valued terms eia(λ) associated with the two Fourier series would cancel out
on the left-hand side of (4.6). In fact, coefficients whose Fourier transform behaves as (4.8) have
already been studied by Wainger (1965).

For example, adapting the arguments of Wainger (1965), we show in Appendix B that

∞∑

n=0

n−b cos(2πna)e2πinx ∼ ca,bx
−de−i(ξax

− a
1−a +ψ), (4.9)

as x ↓ 0, where 0 < a < 1, 0 < b ≤ 1 − a
2 , ψ = −π

4 , ca,b and ξa are two non-zero real constants and

d =
1 − b− a

2

1 − a
. (4.10)

The next proposition, Proposition 4.1, uses (4.9) to construct multivariate LRD series with zero
phases. Before stating the proposition, we shed some light on (4.9)–(4.10) and one further assump-
tion to be made.

Note that, viewing d in (4.10) as a LRD parameter, we need d < 1/2 which translates to

1

2
< b. (4.11)

This additional assumption will be made in the proposition below. Under (4.11), the coefficients
n−b cos(2πna) are also square-summable and thus can be used to define linear time series. When
(4.11) holds, observe that

d =
1 − b− a

2

1 − a
< 1 − b =: d0, (4.12)

where d0 corresponds to the value of d in (4.10) when formally setting a = 0 in the left-hand side
of (4.9) (see Lemma A.1). Moreover, when a1 < a2 (and (4.11) holds),

1 − b− a1
2

1 − a1
>

1 − b− a2
2

1 − a2
. (4.13)

Thus, viewing d as a LRD parameter, it decreases from d0 = 1 − b associated with power-law
coefficients as a increases.

Proposition 4.1 Let {εn}n∈Z be an R
p-valued white noise, satisfying Eεn = 0 and Eεnε

′
n = I. Let

also {Ψm = (ψjk,m)j,k=1,...,p}m≥0 be a sequence of real-valued matrices such that

ψjk,m = αjkm
−bj cos(2πma), m ≥ 0, (4.14)

where αjk ∈ R, 0 < a < 1, 1
2 < bj ≤ 1 − 1

2a, j = 1, . . . , p. Then, the time series

Xn =
∞∑

m=0

Ψmεn−m, (4.15)
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is LRD in the sense of Definition 2.2 with

dj =
1 − bj −

a
2

1 − a
, (4.16)

Gjk = (2π)dj+dk−1ca,bjca,bk(AA∗)jk, (4.17)

where A = (αjk)j,k=1,...,p, ca,b is a non-zero real constant given in Theorem B.1, and hence the
phase parameters

φjk = 0.

When the cosine in (4.14) is replaced by sine, the statements above continue to hold but with

Gjk = −(2π)dj+dk−1ca,bjca,bk(AA∗)jk. (4.18)

Proposition 4.1 is proved in Appendix A.

4.3 The case of general phases

We showed in Proposition 4.1 that trigonometric power-law coefficients lead to zero phases for
multivariate LRD series. The next result shows that linear combinations of trigonometric power-
law coefficients can capture general phases (see also the discussion following Proposition 4.2).

Proposition 4.2 Let {εn}n∈Z be as in Proposition 4.1. Let also {Ψm = (ψjk,m)j,k=1,...,p}m∈Z be a
sequence of real-valued matrices such that

ψjk,m = αjkm
−bj cos(2πma) + βjkm

−bj sin(2πma), m ≥ 0, (4.19)

where αjk, βjk ∈ R, 0 < a < 1, 1
2 < bj ≤ 1 − 1

2a, j = 1, . . . , p. Then, the time series

Xn =

∞∑

m=0

Ψmεn−m, (4.20)

is LRD in the sense of Definition 2.2 with

dj =
1 − bj −

a
2

1 − a
, (4.21)

Gjk = (2π)dj+dk−1ca,bjca,bk

p∑

t=1

zjtzkt, (4.22)

where zjk = αjk + iβjk, and ca,b is a non-zero real constant given in Theorem B.1.

Proposition 4.2 is proved in Appendix A.
Note also that the coefficients ψjk,m in (4.19) can be expressed as (supposing, for example,

αjk 6= 0)

ψjk = αjk

(
cos(2πma) +

βjk
αjk

sin(2πma)

)
m−bj

=
ajk√

1 + β2
jk/α

2
jk


 1√

1 + β2
jk/α

2
jk

cos(2πma) +
βjk/ajk√

1 + β2
jk/α

2
jk

sin(2πma)


m−bj

= τjk (cos(ψjk) cos(2πma) − sin(ψjk) sin(2πma))m−bj

= τjkm
−bj cos(2πma + ψjk), (4.23)
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where τjk = ajk/
√

1 + β2
jk/α

2
jk and ψjk ∈ (−π/2, π/2) is such that tan(ψjk) = −βjk/αjk.

Note that the matrix G = (Gjk)j,k=1,...,p with the entries (4.22) can be written as

G = ZZ∗,

where Z = ((2π)dj ca,bjzjk)j,k=1,...,p. Any Hermitian symmetric, non-negative definite G can be
written as G = WW ∗ and αjk, βjk can be found by setting Z = W .

5 Multivariate FARIMA(0, D, 0) series

We provide here a multivariate, non-causal extension of FARIMA series. Let D = diag(d1, . . . , dp)
with dj < 1/2, j = 1, . . . , p, and Q+ = (q+jk), Q− = (q−jk) ∈ R

p×p. Let also {εn}n∈Z be an R
p-valued

white noise series, satisfying Eεn = 0 and Eεnε
′
n = I. Define a multivariate FARIMA(0,D, 0) series

as
Xn = (I −B)−DQ+εn + (I −B−1)−DQ−εn, (5.1)

where B is the backshift operator. The series Xn is thus given by a non-causal linear representation
(when Q− is not identically zero). In the next result, we give the exact form of the autocovariance
matrix function of the multivariate FARIMA(0,D, 0) series in (5.1).

Proposition 5.1 The (j, k) component γjk(n) of the autocovariance matrix function γ(n) of the
multivariate FARIMA(0,D, 0) series in (5.1) is given by

γjk(n) =
1

2π

(
b1jkγ1,jk(n) + b2jkγ2,jk(n) + b3jkγ3,jk(n) + b4jkγ4,jk(n)

)
, (5.2)

where

b1jk =

p∑

t=1

q−jtq
−
jt = (Q−(Q−)∗)jk, b3jk =

p∑

t=1

q+jtq
+
jt = (Q+(Q+)∗)jk,

b2jk =

p∑

t=1

q−jtq
+
jt = (Q−(Q+)∗)jk, b4jk =

p∑

t=1

q+jtq
−
jt = (Q+(Q−)∗)jk,

(5.3)

and
γ1,jk(n) = γ3,kj(n) = 2Γ(1 − dj − dk) sin(πdk)

Γ(n+dk)
Γ(n+1−dj)

,

γ4,jk(n) = γ2,jk(−n) =

{
2π 1

Γ(dj+dk)
Γ(dj+dk+n)

Γ(1+n) , n = 0, 1, 2, . . . ,

0 , n = −1, −2, . . .

(5.4)

Remark 5.1 Since (I − B)−d =
∑∞

j=0 bjB
j with bj = jd−1/Γ(d), as j → ∞, observe that the

FARIMA(0,D, 0) series satisfies (3.1) with

A+ = Γ(D)−1Q+, A− = Γ(D)−1Q−, (5.5)

where Γ(D)−1 = diag(Γ(d1)
−1, . . . ,Γ(dp)

−1). By using Γ(j+a)/Γ(j+b) ∼ ja−b, as j → ∞, observe
also that, as n→ ∞,

γ1,jk(n) ∼ 2Γ(1 − dj − dk) sin(πdj)
Γ(n+ dj)

Γ(n+ 1 − dk)
=

2π sin(πdj)

Γ(dj + dk) sin(π(dj + dk))
ndj+dk−1, (5.6)

γ4,jk(n) ∼
2π

Γ(dj + dk)
ndj+dk−1. (5.7)

The relations (5.5)–(5.7) show that (5.2)–(5.4) are consistent with (3.4)–(3.5).
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Proof: By using Theorem 11.8.3 in Brockwell and Davis (2009), the FARIMA(0,D, 0) series in
(5.1) has the spectral density matrix

f(λ) =
1

2π
G(λ)G(λ)∗, (5.8)

where G(λ) = (1 − e−iλ)−DQ+ + (1 − eiλ)−DQ−. This can be expressed component-wise as

fjk(λ) =
1

2π
gj(λ)gk(λ)∗, (5.9)

where gj is the jth row of G. Then, the (j, k) component of the autocovariance matrix is

γjk(n) =

∫ 2π

0
einλfjk(λ)dλ =

σ2

2π

∫ 2π

0
einλgj(λ)gk(λ)∗dλ

=
1

2π

(
b1jkγ1,jk(n) + b2jkγ2,jk(n) + b3jkγ3,jk(n) + b4jkγ4,jk(n)

)
, (5.10)

where b1jk, b
2
jk, b

3
jk, b

4
jk are given in (5.3), and

γ1,jk(n) = γ3,kj(n) =

∫ 2π

0
einλ(1 − eiλ)−dj (1 − e−iλ)−dkdλ,

γ2,jk(n) =

∫ 2π

0
einλ(1 − eiλ)−(dj+dk)dλ, γ4,jk(n) =

∫ 2π

0
einλ(1 − e−iλ)−(dj+dk)dλ.

By writing 1 − e±iλ = 2 sin(λ2 )e±i(λ−π)/2, we have

γ1,jk(n) =
eiπ(dj−dk)/2

2dj+dk

∫ 2π

0
einλ sin−dj−dk(

λ

2
)eiλ(dk−dj)/2dλ

=
2eiπ(dj−dk)/2

2dj+dk

∫ π

0
eiω(2n+dk−dj) sin−dj−dk(ω)dω.

By using Formula 3.892.1 in Gradshteyn and Ryzhik (2007), p. 485, we deduce that

γ1,jk(n) =
2eiπ(dj−dk)/2

2dj+dk

πeiβπ/2

2ν−1νB(ν+β+1
2 , ν−β+1

2 )
,

where β = 2n+ dk − dj and ν = 1 − dk − dj . Then,

γ1,jk(n) = 2π(−1)n
Γ(1 − dj − dk)

Γ(1 − dj + n)Γ(1 − dk − n)
. (5.11)

Similar calculations yield

γ2,jk(n) = 2π(−1)n
Γ(1 − dj − dk)

Γ(1 − n)Γ(1 + n− dj − dk)
. (5.12)

The relations (5.4) can now be deduced from (5.11) and (5.12) by using the identities Γ(z)Γ(1−z) =
π/ sin(πz) and Γ(z)Γ(1 − z) = (−1)nΓ(n+ z)Γ(1 − n− z), 0 < z < 1. 2

The exact form of the autovovariance function in (5.2)–(5.4) can be used, for example, in a fast
generation of the Gaussian FARIMA(0,D, 0) series by using a circulant matrix embedding method
(see Helgason et al. (2011)). For example, Figure 1 presents the plots of a bivariate FARIMA(0,D, 0)
series with

Q+ =

(
0.50246 0

0 1.2436

)
, Q− =

(
0 −1.8878

3.4191 0

)
, D =

(
0.2 0
0 0.4

)
, φ = 1.4587.
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Figure 1: Components of bivariate FARIMA(0,D, 0) series where D = diag(0.2, 0.4), and φ =
1.4587.

A Technical proofs

We gather here the proofs of several results given above, starting with Proposition 2.1. Recall that
a slowly varying function L is quasi-monotone if it is of bounded variation on any compact interval
of [0,∞) and, if for some δ > 0,

∫ x

0
uδ|dL(u)| = O

(
xδL(x)

)
, as x→ ∞ (A.1)

(Bingham, Goldie and Teugels (1989)). One interest in quasi-monotone slowly varying functions
lies in the following classical result (see, for example, Theorem 4.3.2 in Bingham et al. (1989)).

Lemma A.1 Suppose L is a quasi-monotone slowly varying function. Let g(u) stand for
cos(u), sin(u) or eiu, and 0 < p < 1. Then, the following series converges conditionally for
all λ ∈ (0, π], and

∞∑

k=0

g(kλ)
L(k)

kp
∼ λp−1L

(
1

λ

)
Γ(1 − p)g

(π
2
(1 − p)

)
, as λ→ 0. (A.2)

A converse of Lemma A.1, allowing one to go from the spectral domain to the time domain, is
also available (see (4.3.8) in Bingham et al. (1989)).

Lemma A.2 Suppose l(1/u) is a quasi-monotone slowly varying function on (1/π,∞), and 0 <
p < 1. Then, ∫ π

0
einλλp−1l(λ)dλ ∼ n−pl

(
1

n

)
Γ(p)e

iπp
2 , as n→ ∞.

Proof of Proposition 2.1: (i) One consequence of Lemma A.1 (omitted here for the shortness
sake) is that we can write

fjk(λ) =
1

2π

∞∑

n=−∞

e−inλγjk(n). (A.3)
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(Proving (A.3) amounts to showing that fjk(λ) given by the right-hand side of (A.3) satisfies∫ π
−π e

inλfjk(λ)dλ = γjk(n).) Then, by using γjk(−n) = γkj(n),

fjk(λ) =
1

2π

{ ∞∑

n=−∞

cos(nλ)γjk(n) − i

∞∑

n=−∞

sin(nλ)γjk(n)
}

=
1

2π

{
γjk(0) +

∞∑

n=0

cos(nλ)(γjk(n) + γkj(n))
}
−

i

2π

{ ∞∑

n=0

sin(nλ)(γjk(n) − γkj(n))
}

=
1

2π

{
γjk(0) +

∞∑

n=1

cos(nλ)
Rjk(n) +Rkj(n)

n1−(dj+dk)

}
−

i

2π

{ ∞∑

n=1

sin(nλ)
Rjk(n) −Rkj(n)

n1−(dj+dk)

}
.

It follows from Lemma A.1 that

fjk(λ) ∼
Γ(dj + dk)

2π
λ−(dj+dk)

{
(Rjk +Rkj) cos(

π

2
(dj + dk)) − i(Rjk −Rkj) sin(

π

2
(dj + dk))

}
,

showing (2.14). This also immediately yields (2.15)–(2.16) by using (2.8).
(ii) Note that

γjk(n) =

∫ π

−π
einλfjk(λ)dλ =

∫ π

−π
einλGjk(λ)|λ|−(dj+dk)dλ

=

∫ π

0
einλ(<Gjk(λ) + i=Gjk(λ))λ−(dj+dk)dλ+

∫ π

0
e−inλ(<Gjk(−λ) + i=Gjk(−λ))λ−(dj+dk)dλ

=

∫ π

0
einλ(<Gjk(λ) + i=Gjk(λ))λ−(dj+dk)dλ+

∫ π

0
e−inλ(<Gkj(λ) − i=Gkj(λ))λ−(dj+dk)dλ

= 2

∫ π

0
cos(nλ)<Gjk(λ)λ−(dj+dk)dλ−

∫ π

0
sin(nλ)=Gjk(λ)λ−(dj+dk)dλ,

where we used <Gjk(λ) = <Gkj(λ) and =Gjk(λ) = −=Gkj(λ). By Lemma A.2 we get that

γjk(n) ∼ 2Γ(1 − (dj + dk))n
(dj+dk)−1

{
<Gjk cos(

π

2
(1 − (dj + dk))) −=Gjk sin(

π

2
(1 − (dj + dk)))

}
,

which yields (2.17). 2

We next turn to Proposition 3.1.

Proof of Proposition 3.1: Write the autocovariance function γ(n) of Xn as

γ(n) =
∞∑

m=−∞

ΨmΨ′
m+n =

−n−1∑

m=−∞

ΨmΨ′
m+n+

0∑

m=−n

ΨmΨ′
m+n+

∞∑

m=0

ΨmΨ′
m+n =: γ1(n)+γ2(n)+γ3(n).

Denote by γi,jk(n) the (j, k) component of γi(n), i = 1, 2, 3. Then, by using (3.1), we have

γ1,jk(n) =
−n−1∑

m=−∞

p∑

t=1

Ljt(m)Lkt(m+ n)|m|dj−1|m+ n|dk−1

=

p∑

t=1

∞∑

m=n+1

Ljt(−m)Lkt(n−m)mdj−1(m+ n)dk−1

= ndj+dk−1
p∑

t=1

∞∑

m=n+1

Ljt(−m)Lkt(n−m)
(m
n

)dj−1 (m
n

+ 1
)dk−1 1

n

∼ ndj+dk−1
p∑

t=1

α−
jtα

−
kt

∫ ∞

1
xdj−1(x− 1)dk−1dx,
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where the last asymptotic relation follows by the dominated convergence theorem and (3.2). By
using Formula 3.191.2 in Gradshteyn and Ryzhik (2007), p. 315, we have

γ1,jk(n) ∼ R1
jkn

dj+dk−1, as n→ ∞, (A.4)

where R1
jk =

∑p
t=1 α

−
jtα

−
kt

Γ(dk)Γ(1−dj−dk)
Γ(1−dj)

ndj+dk−1. Similarly for γ2,jk(n) and γ3,jk(n), as n → ∞,

we have

γ2,jk(n) ∼ ndj+dk−1
p∑

t=1

α−
jtα

+
kt

∫ 1

0
xdj−1(1 − x)dk−1dx = R2

jkn
dj+dk−1, (A.5)

γ3,jk(n) ∼ ndj+dk−1
p∑

t=1

α+
jta

+
kt

∫ ∞

0
xdj−1(x+ 1)dk−1dx = R3

jkn
dj+dk−1, (A.6)

where R2
jk =

∑p
t=1 α

−
jtα

+
kt

Γ(dj)Γ(dk)
Γ(dj+dk) and R3

jk =
∑p

t=1 α
+
jtα

+
kt

Γ(dj)Γ(1−dj−dk)
Γ(1−dk) . Combining (A.4), (A.5)

and (A.6), we get (2.1)–(2.2) with

Rjk = c1jk
Γ(dk)Γ(1 − dj − dk)

Γ(1 − dj)
+ c2jk

Γ(dj)Γ(dk)

Γ(dj + dk)
+ c3jk

Γ(dj)Γ(1 − dj − dk)

Γ(1 − dk)
, (A.7)

where c1jk =
∑p

t=1 α
−
jtα

−
kt, c

2
jk =

∑p
t=1 α

−
jtα

+
kt, c

3
jk =

∑p
t=1 α

+
jtα

+
kt. The coefficients Rjk can be

expressed as in (3.4) by using the identity Γ(z)Γ(1 − z) = π
sin(πz) , 0 < z < 1. 2

Next, we will prove Propositions 4.1 and 4.2.

Proof of Proposition 4.1: The series Xn in (4.15) is well defined (in the L2(Ω)-sense) since
bj > 1/2 and hence

∞∑

m=0

|ψm,jk|
2 =

∞∑

m=0

|αjkm
−bj cos(2πma)|2 ≤ α2

jk

∞∑

m=0

m−2bj <∞,

for j, k = 1, . . . , p. Moreover, from (5.3) in Hannan (1970), p. 61, the spectral density matrix f(λ)
of Xn is given by

f(λ) =
1

2π

(
∞∑

m=0

Ψme
−imλ

)(
∞∑

m=0

Ψme
−imλ

)∗

, (A.8)

where the series
∑∞

m=0 Ψme
−imλ is defined a.e. in the L2(−π, π]-sense. The (j, k) entry of the series∑∞

m=0 Ψme
−imλ is given by

∑∞
m=0 ψm,jke

−imλ = αjk
∑∞

m=0m
−bj cos(2πma)e−imλ. By Lemma

B.3, this entry is equal to αjkf1(λ/2π), where f1(x) is defined in Lemma B.1. Hence, with this
interpretation and by using Lemma B.1 with x = λ/2π,

∞∑

m=0

ψm,jke
−imλ ∼ ajk(2π)dj ca,bjλ

−djei(ξa(2π)
a

1−a λ
− a

1−a −π
4
), as λ ↓ 0. (A.9)

By using (A.8) and (A.9), we conclude that

fjk(λ) ∼ (2π)dj+dk−1ca,bj ca,bk

p∑

t=1

ajtaktλ
−(dj+dk). (A.10)
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Finally, the last statement of the proposition concerning sine can be deduced similarly. 2

Proof of Proposition 4.2: As in the proof above, the series Xn in (4.20) is well defined
in the L2(Ω)-sense and its spectral density is given by (A.8), where the series

∑∞
m=0 Ψme

−imλ

is defined a.e. in the L2(−π, π]-sense. The (j, k) entry of the series
∑∞

m=0 Ψme
−imλ is given

by
∑∞

m=0 ψm,jke
−imλ = αjk

∑∞
m=0m

−bj cos(2πma)e−imλ + βjk
∑∞

m=0m
−bj sin(2πma)e−imλ. By

Lemma B.3, this entry is equal to αjkf1(λ/2π) + βjkf2(λ/2π), where f1(x), f2(x) are defined in
Lemma B.1. Then, by using Lemma B.1 with x = λ/2π,

∞∑

m=0

ψm,jke
−imλ ∼ zjk(2π)dj ca,bjλ

−djei(ξa(2π)
a

1−a λ
− a

1−a −ψ), as λ ↓ 0, (A.11)

where zjk = αjk + iβjk. By using (A.8) and (A.11), we conclude that

fjk(λ) ∼ (2π)dj+dk−1ca,bjca,bk

p∑

t=1

zjtzktλ
−(dj+dk). (A.12)

2

B Fourier series of trigonometric power-law coefficients

In the next result, we establish the asymptotic behavior of the Fourier series of the trigonometric
power-law coefficients (1.10). The proof is based on the work of Wainger (1965) who obtained a
similar result for double-sided trigonometric power-law coefficients (Theorem 10 in Wainger (1965),
p. 53). For shortness sake, we shall abbreviate the work of Wainger (1965) by WA.

Theorem B.1 Let 0 < a < 1 and 0 < b ≤ 1 − 1
2a. For ε > 0, define

fε,1(x) =
∞∑

n=0

n−b cos(2πna)e2πinx−εn, fε,2(x) =
∞∑

n=0

n−b sin(2πna)e2πinx−εn.

Then, the limits fj(x) = limε↓0 fε,j(x), j = 1, 2, exist in the pointwise sense for x 6= 0. Moreover,
fj(x) are continuous for x 6= 0, j = 1, 2, and

f1(x) = |x|−de− sign(x)i(ξa|x|
− a

1−a +ψ)
(
ca,b +O(|x|

a
1−a )

)
+ C1(x), (B.1)

f2(x) = |x|−d sign(x)ie− sign(x)i(ξa|x|
− a

1−a +ψ)
(
ca,b +O(|x|

a
1−a )

)
+ C2(x), (B.2)

where d =
1−b− a

2
1−a , ca,b = 1

2a
−

b−1/2
1−a (1−a)−1/2, ξa = 2π(a

a
1−a −a

1
1−a ), ψ = −π

4 and C1(x), C2(x) are
continuous functions.

Proof: We follow to the extent possible the notation of Wainger (1965), abbreviated WA below.
Consider the functions

Φ1(u) = ψ(u)|u|−b cos(2π|u|a), Φ2(u) = ψ(u)|u|−b sin(2π|u|a),

where ψ(u) ∈ C∞(−∞,∞), ψ(u) = 0 for u ≤ 1/2, ψ(u) = 1 for u ≥ 1 and 0 ≤ ψ(u) ≤ 1. Let
ε > 0 and Dε,j(x) = {Φj(u)e

−εu}∨(x) =
∫

R
Φj(u)e

2πixu−εudu be the inverse Fourier transforms
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of e−εuΦj(u), j = 1, 2. Observe that the functions fε,j(x) =
∑∞

n=0 Φj(n)e2πinx−εn are discrete
counterparts of Dε,j(x). The proof below will show that

Dj(x) = lim
ε↓0

Dε,j(x), j = 1, 2, (B.3)

exist and are continuous at x 6= 0, that fj(x) and Dj(x) are equal up to a continuous function,
and that Dj(x), j = 1, 2, have the asymptotic behavior of the first terms on the right-hand sides
in (B.1)–(B.2). We will use Lemma 11 (p. 37) and Theorem 9 (p. 41) in WA.

Consider the function F k,a,bε (x) appearing in 2.4 of WA, p. 44,

F k,a,bε (x) = 2π|x|
1
2
(2−k)

∫ ∞

0
ψ(u)u−b+

1
2
ke2πiu

a−εuJ 1
2
(k−2)(2π|x|u)du, (B.4)

where Jµ(x) is a Bessel function of the first kind. (See, for example, Korenev (2002) for more
information on Bessel functions.) The function (B.4) is denoted by Fε(x) in WA. We added the
superscripts k, a and b to avoid confusion regarding the values of these parameters. By Lemma
B.1 below,

Dε,1(x) =
1

2
Re(F 1,a,b

ε (x)) + sign(x)i
1

2
|x|Re(F 3,a,b+1

ε (x)), (B.5)

Dε,2(x) =
1

2
Im(F 1,a,b

ε (x)) + sign(x)i
1

2
|x|Im(F 3,a,b+1

ε (x)). (B.6)

By Theorem 9 in WA (see again 2.4 in WA, p. 44), F k,a,b(x) = limε↓0 F
k,a,b
ε (x) exists in the pointwise

sense for x 6= 0, and F k,a,b(x) is continuous for x 6= 0. Thus, in view of (B.5) and (B.6), the same
holds for Dε,j(x) and Dj(x), j = 1, 2.

We now want to use Lemma 11 in WA, p. 37, with Φ = Φj, Fε = Dε,j and F = Dj in the lemma.
The established relation (B.3) is one of the assumptions of the lemma. The other assumptions are
|Φj(u)| = O(eε|x|) as u→ ∞, and |Dε,j(x)| = O(|x|−1−µ) uniformly in ε for some µ > 0, as x→ ∞.
The first of these assumptions certainly holds. The second assumption can be verified by using
Theorem 9 in WA. Thus, Lemma 11 of WA yields that the limits fj(x) exist, are continuous at
x 6= 0, and are equal to Dj(x) up to continuous functions.

It remains to show that the functions Dj(x) behave as the first terms on the right-hand sides
of (B.1)–(B.2). Theorem 9, ii), in WA shows that, for b ≤ k(1 − 1

2a) and m0 = 0,

F k,a,b(x) = |x|−
k−b− ka

2
1−a eiξa|x|

− a
1−a

(
α0 +O(|x|

a
1−a )

)
+ C̃k(|x|), (B.7)

where C̃k(|x|) is a continuous function and α0 ∈ C\{0} depends on a, b and k. For the asymptotic
behavior of (B.1)–(B.2), we need and exact form of the constant α0 when k = 1 and k = 3. By
using a version of the saddle point method, which is finer than the one used in Lemma 13 of WA,
we show in Lemma B.2 below that

α0 = 2ca,be
iψ (B.8)

when k = 1, and
α0 = 2ca,bie

iψ (B.9)

when k = 3. This yields

F 1,a,b(x) = |x|−dei(ξa|x|
− a

1−a +ψ)
(
2ca,b +O(|x|

a
1−a )

)
+ C̃1(|x|), (B.10)

F 3,a,b+1(x) = |x|−d−1iei(ξa|x|
− a

1−a +ψ)
(
2ca,b +O(|x|

a
1−a )

)
+ C̃3(|x|). (B.11)
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Letting ε ↓ 0 in (B.5), (B.6), and using (B.10) and (B.11), we conclude that

D1(x) = |x|−de− sign(x)i(ξa|x|
− a

1−a +ψ)
(
ca,b +O(|x|

a
1−a )

)
+

1

2

(
Re(C̃1(|x|)) + i|x|Re(C̃3(|x|))

)
,

D2(x) = |x|−d sign(x)ie− sign(x)i(ξa|x|
− a

1−a +ψ)
(
ca,b +O(|x|

a
1−a )

)
+

1

2

(
Im(C̃1(|x|)) + i|x|Im(C̃3(|x|))

)
,

where we also used the identities

cos(y) − sign(x)i sin(y) = e− sign(x)iy , sin(y) + sign(x)i cos(y) = sign(x)ie− sign(x)iy.

This completes the proof. 2

The next two auxiliary lemmas were used in the proof of Theorem B.1 above.

Lemma B.1 The functions Dε,j(x), j = 1, 2, F k,a,bε (x), defined in (B.3) and (B.4), satisfy the
relations (B.5) and (B.6).

Proof: By using the Bessel function properties J− 1
2
(x) =

√
2
πx cos(x) and J 1

2
(x) =

√
2
πx sin(x)

(Korenev (2002), p. 16) and the facts that cos(|x|) = cos(x) and sin(|x|) = sign(x) sin(x), we have

F 1,a,b
ε (x) = 2

∫ ∞

0
ψ(u)u−be2πiu

a−εu cos(2πxu)du,

F 3,a,b+1
ε (x) = 2sign(x)|x|−1

∫ ∞

0
ψ(u)u−be2πiu

a−εu sin(2πxu)du.

Since ψ(u) = 0 for u < 0, we can also rewrite the inverse Fourier transforms Dε,j(x) as

Dε,1(x) =

∫ ∞

0
ψ(u)u−b cos(2πua)e2πixu−εudu, Dε,2(x) =

∫ ∞

0
ψ(u)u−b sin(2πua)e2πixu−εudu.

Since

Re(Dε,1(x)) =
1

2
Re(F 1,a,b

ε (x)), Im(Dε,1(x)) =
1

2
sign(x)|x|Re(F 3,a,b+1

ε (x)),

Re(Dε,2(x)) =
1

2
Im(F 1,a,b

ε (x)), Im(Dε,2(x)) =
1

2
sign(x)|x|Im(F 3,a,b+1

ε (x)),

we conclude that (B.5) and (B.6) hold. 2

The second auxiliary lemma uses a saddle point method. The saddle point method allows
computing asymptotic expansions of integrals of the form

I(t) =

∫

C
f(z)eth(z)dz, as t→ ∞,

where C is a contour in the complex plane and the functions f(z), h(z) are holomorphic in a
neighborhood of this contour. According to the method, if z0 is an interior point of C and a saddle
point of h(z), that is, h′(z0) = 0, h′′(z0) 6= 0, then

I(t) =

√
2π

−h′′(z0)
t−1/2eth(z0)

(
f(z0) +O(t−1)

)
, as t→ ∞. (B.12)

See, for example, Fedoryuk (2011). The version of the saddle point result (B.12) used by WA,
Lemma 13, pp. 42-43, provides only the absolute value of the constant at t1/2eth(z0) in (B.12), that
is, the value (2π)1/2|h′′(z0)|

−1/2|fz0|. (This is also after correcting the typo in WA, p. 43, where the
exponent 1/2 of |h′′(ξ)| should be replaced by −1/2.) The finer version (B.12) allows us to identify
the constant α0 in (B.7) as stated in the next lemma.

Lemma B.2 The coefficient α0 appearing in (B.7) is given by (B.8) and (B.9) when k = 1 and 3,
respectively, and the relations (B.10) and (B.11) hold.
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Proof: To prove that F k,a,b(x) in (B.7) is the limit of F k,a,bε (x), Wainger (1965) decomposes

F k,a,bε (x) into several integrals. The main contribution to F k,a,b(x) comes from the integral given
in 2.20 on p. 49 in WA,

Hk,a,b
II (x) = 2|x|

b−k
1−a t

1
2
(1−k)

∫

II
s−b+

1
2
(k−1)eth1(s)S

1
2
(k−2)

1 (2πst)ds,

where h1(s) = 2πisa − 2πis, t = |x|−
a

1−a , Sµ1 (z) is an analytic function given in Lemma 12 of WA,

and II is the contour described on p. 47 of WA. Therefore, it is enough to show that H1,a,b
II (x) and

H3,a,b+1
II (x) are equal to the right-hand sides of (B.10) and (B.11), respectively, up to a continuous

function. When k = 1 and k = 3, we get from Lemma 12 of WA that S
−1/2
1 (z) = 1/2, S

1/2
1 (z) = i/2.

Then,

H1,a,b
II (x) = |x|

b−1
1−a

∫

II
s−beth1(s)ds, H3,a,b+1

II (x) = |x|
b−2+a
1−a i

∫

II
s−beth1(s)ds.

(Note that the second term is with b+1 to correspond to F 3,a,b+1(x) in (B.11)). Next, consider the

integral I(t) =
∫
II s

−beth1(s)ds. Let ξ = a
1

1−a and observe that the point (ξ, 0) is a saddle point of
h1 that lies in the interior of the contour II (as seen in figure 1 of WA, p. 46). Then, from (B.12),

I(t) = t−
1
2 ei(tξa+ψ)

(
ca,b +O(t−1)

)
, as t→ ∞. This yields

H1,a,b(x) = |x|−dei(ξa|x|
− a

1−a +ψ)
(
2ca,b +O(|x|

a
1−a )

)
,

H3,a,b+1(x) = |x|−d−1iei(ξa|x|
− a

1−a +ψ)
(
2ca,b +O(|x|

a
1−a )

)
.

2

Finally, we include the following elementary lemma which is used in the proofs of Propositions
4.1 and 4.2.

Lemma B.3 Let a, b and f1, f2 be as in Theorem B.1. If

b >
1

2
,

then the trigonometric power-law coefficients (1.10) are in l2(Z), and their Fourier series (defined
in the L2(−1, 1]-sense) satisfy

f1(x) =

∞∑

n=0

cos(2πna)n−be2πinx, f2(x) =

∞∑

n=0

sin(2πna)n−be2πinx, a.e. dx. (B.13)

Proof: Consider the functions fε,j(x), j = 1, 2, defined in Theorem B.1. Since

∫ 1/2

−1/2

∣∣∣∣∣fε,1(x) −
∞∑

n=0

cos(2πna)n−be2πinx

∣∣∣∣∣

2

dx =

∞∑

n=0

n−2b cos2(2πna)(e−εn − 1)2 → 0,

as ε ↓ 0, we have fε,1(x) converging to the Fourier series
∑∞

n=0 cos(2πna)n−be2πinx in the
L2(−1/2, 1/2]−sense. By Theorem B.1, fε,1(x) to f1(x) pointwise. The uniqueness of the limit
yields the first relation in (B.13). The proof of the second relation in (B.13) is analogous. 2
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