Bivariate long-range dependent time series models with general phase

Stefanos Kechagias (joint work with Vladas Pipiras)

University of North Carolina at Chapel Hill SAS Institute

July 6, 2015

European Meeting of Statisticians Amsterdam 2015

Stefanos Kechagias (UNC)

Bivariate LRD time series

July 6, 2015 1 / 21

- Motivation from real data
- Objinitions and models for bivariate long-range dependent (LRD) time series
- Inference under a parametric noncausal bivariate LRD model
- Application to U.S. inflation rates
- Future work

Bivariate LRD - Motivation from real data

Figure: Annualized monthly U.S. inflation rates for goods (left) and services (right) from February 1956 to January 2008.

Bivariate LRD - Motivation from real data

Figure: Sample autocorrelation functions of U.S. inflation rates in goods (left) and in services (right).

- Slow decay of the two acf's hints towards long-range dependence.
- Services inflation appears to have longer memory than goods inflation.

Bivariate LRD - Motivation from real data

Figure: Left: Sample crosscorrelation function of U.S. inflation rates in goods and services. Right: Imaginary part of cross periodogram.

- $\Im(I_{12}(\lambda)) > 0$ (for λ close to 0) implies asymmetry in the series
- We need LRD models that allow for general asymmetry behavior

Definitions of bivariate long-range dependent series

We start with some notation:

- {X_n}_{n∈ℤ}={(X_{1,n}, X_{2,n})'}_{n∈ℤ} is a bivariate, zero mean, second-order stationary time series
- $\gamma(n) = \mathbb{E} X_0 X'_n$ is the autocovariance matrix of $\{X_n\}_{n \in \mathbb{Z}}$
- $f(\lambda)$ is the spectral density matrix of $\{X_n\}_{n\in\mathbb{Z}}$ satisfying $\gamma(n) = \int_{-\pi}^{\pi} e^{in\lambda} f(\lambda) d\lambda.$
- $\{\epsilon_n\}_{n\in\mathbb{Z}}$ is a bivariate WN with $\mathbb{E}\epsilon_n\epsilon'_n = I$. $\{\eta_n\}_{n\in\mathbb{Z}}$ is a bivariate WN with $\mathbb{E}\eta_n\eta'_n = \Sigma$

The definitions and models of the time series we will discuss involve the so-called *long-range dependent* parameters $d_1, d_2 \in (0, 1/2)$.

Definitions of bivariate LRD series

A bivariate stationary time series is LRD if

<u>Time domain</u>: As $k \to \infty$, its autocovariance matrix $\gamma(k)$ satisfies

$$\gamma(k) = \begin{pmatrix} \gamma_{11}(k) & \gamma_{12}(k) \\ \gamma_{21}(k) & \gamma_{22}(k) \end{pmatrix} \sim \begin{pmatrix} R_{11}k^{2d_1-1} & R_{12}k^{d_{12}-1} \\ R_{21}k^{d_{12}-1} & R_{22}k^{2d_2-1} \end{pmatrix},$$

where $R = (R_{jk})_{j,k=1,2}$ is some 2 × 2 real matrix and $d_{12} = d_1 + d_2$.

Spectral domain: As $\lambda \to 0^+$, its spectral density matrix $f(\lambda)$ satisfies

$$f(\lambda) = \begin{pmatrix} f_{11}(\lambda) & f_{12}(\lambda) \\ f_{21}(\lambda) & f_{22}(\lambda) \end{pmatrix} \sim \begin{pmatrix} g_{11}\lambda^{-2d_1} & g_{12}e^{i\phi}\lambda^{-d_{12}} \\ g_{12}e^{-i\phi}\lambda^{-d_{12}} & g_{22}\lambda^{-2d_2} \end{pmatrix},$$

where $g_{11}, g_{12}, g_{22} \in \mathbb{R}$ and the phase parameter $\phi \in (-\pi, \pi]$.

Note: The spectral domain definition contains 6 parameters.

Stefanos Kechagias (UNC)

Definitions of bivariate LRD series

Remark 1: The phase parameter is unique to LRD. Indeed, for short-range dependent series $f(\lambda) = (2\pi)^{-1} \sum_{k=-\infty}^{\infty} e^{-ik\lambda} \gamma(k)$ and $f(0) = (2\pi)^{-1} \sum_{k=-\infty}^{\infty} \gamma(k)$ has real entries.

Remark 2: Under mild assumptions (and letting $G_{12} = g_{12}e^{i\phi}$)

$$f_{12}(\lambda) \underset{\lambda o 0^+}{\sim} G_{12} \lambda^{-2d_{12}} \quad \Leftrightarrow \quad \gamma_{12}(k) \underset{k o \infty}{\sim} R_{12} k^{d_{12}-1},$$

with

$$\phi = - ext{atan} \left\{ rac{R_{12} - R_{21}}{R_{12} + R_{21}} ext{tan} \left(rac{\pi d_{12}}{2}
ight)
ight\}.$$

Remark 3: $\phi = 0 \Leftrightarrow R_{12} = R_{21}$. This corresponds to $\gamma_{12}(k)$ being symmetric at the two tails, that is $\gamma_{12}(k) \underset{k \to \infty}{\sim} \gamma_{21}(k) = \gamma_{12}(-k)$.

Bivariate LRD models

• A common model for bivariate LRD series is the VARFIMA(0, D, 0) defined as

$$X_n = \begin{pmatrix} X_{1,n} \\ X_{2,n} \end{pmatrix} = \begin{pmatrix} (I-B)^{-d_1}\eta_{1,n} \\ (I-B)^{-d_2}\eta_{2,n} \end{pmatrix} = (I-B)^{-D}\eta_n = (I-B)^{-D}Q_+\epsilon_n,$$

where $D = \text{diag}(d_1, d_2)$, $\eta_n \sim \text{WN}(0, \Sigma)$, $\Sigma = Q_+Q'_+, BX_n = X_{n-1}$

• Fact: The spectral density matrix of the VARFIMA series above satisfies

$$f(\lambda)\sim \left(egin{array}{cc} g_{11}\lambda^{-2d_1} & g_{12}e^{-i\phi}\lambda^{-d_{12}} \ g_{12}e^{i\phi}\lambda^{-d_{12}} & g_{22}\lambda^{-2d_2} \end{array}
ight), \quad ext{as} \quad \lambda
ightarrow 0^+,$$

with the special phase parameter $\phi = \frac{\pi}{2}(d_1 - d_2)$.

Question: Can one define a bivariate LRD model that allows for general phase parameter? Will such a model yield better predictions?

Stefanos Kechagias (UNC)

Bivariate LRD time series

Bivariate LRD models

Figure: Left: Local Whittle estimates of d_1 , d_2 for the inflation data plotted as functions of a tuning parameter $m = N^{0.25}, \ldots, N^{0.9}$, where N is the sample size. Right: Local Whittle phase estimates, one corresponding to the VARFIMA (dashed line) and one estimated directly from the data (solid line).

Causal VARFIMA(0, D, 0)

The VARFIMA(0, D, 0) series X_n = (I − B)^{-D}Q₊ϵ_n has a causal or one-sided linear representation of the form

$$X_n = \sum_{m \in I} \Psi_m \epsilon_{n-m},\tag{1}$$

where $I = \mathbb{Z}^+$ and the entries $(\psi_{jk,m})_{j,k=1,2}$ of $\{\Psi_m\}_{j\in\mathbb{Z}}$ satisfy

$$\psi_{jk,m} \underset{m \to \infty}{\sim} \alpha_{jk}^+ |m|^{d_j - 1}, \quad \text{for some} \quad \alpha_{jk}^+ \in \mathbb{R}.$$
 (2)

 Fact: The causal series (1) with power-law coefficients (2) always has the special phase φ = π/2(d₁ − d₂).

Question: How can we modify (1) to obtain a series with general phase?

- Result 1: A bivariate LRD series with general phase can be constructed by taking *I* = ℤ in (1) and Ψ_m as in (2) with m→∞ and m→−∞ (noncausal or two-sided series).
- **Result 2:** A causal bivariate LRD series with general phase can be constructed by taking *trigonometric power law* coefficients

 $\psi_{jk,m} = \alpha_{jk}m^{-b_k}\cos(2\pi m^a) + \beta_{jk}m^{-b_k}\sin(2\pi m^a), \quad m \ge 0,$

where $\alpha_{jk}, \beta_{jk} \in \mathbb{R}$, 0 < a < 1, $\frac{1}{2} < b_k \le 1 - \frac{1}{2}a$, j = 1, 2.

Question: What about a parametric bivariate LRD model with general phase?

• Define the bivariate noncausal VARFIMA(0, D, 0) series as

$$X_n = \left((I - B)^{-D} Q_+ + (I - B^{-1})^{-D} Q_- \right) \epsilon_n,$$

where Q_+ , Q_- are two real-valued 2 \times 2 matrices.

- **Result 3:** The noncausal VARFIMA(0, *D*, 0) series has a general phase. Moreover, its autocovariance function has an explicit form.
- The noncausal VARFIMA(0, D, 0) series has 10 parameters. This causes identifiability problems as the same φ can be obtained by more than one choice of Q₊, Q₋.

Noncausal VARFIMA(0, D, 0)

Taking

$$Q_{-}=CQ_{+},\quad C=\left(egin{array}{c} c&0\\ 0&-c \end{array}
ight),$$

leads to the noncausal VARFIMA(0, D, 0) series

$$X_n = \Delta_c(B)^{-1}\eta_n,$$

 $\Delta_c(B)^{-1} := (I-B)^{-D} + (I-B^{-1})^{-D}C.$

 Result 4: For any φ_c ∈ (-π/2, π/2), ∃! c ∈ (-1, 1) such that X_n has the phase parameter φ = φ_c. Moreover, c has a closed form given by

$$c = \frac{2(a_1 + a_2) - \sqrt{\Delta}}{2(a_1 - a_2 - \tan(\phi_c))(1 + a_1a_2)}$$

where $a_k = \tan\left(\frac{\pi d_k}{2}\right)$, and $\Delta = 16a_1a_2 + 4(1 + a_1a_2)^2 \tan^2(\phi_c)$.

• Define the noncausal VARFIMA(0, D, q) series as

 $Y_n = \Delta_c(B)^{-1} \Theta(B) \eta_n,$

where $\Theta(B) = I_2 + \Theta_1 B + \ldots + \Theta_q B^q$ is the MA matrix polynomial.

- **Remark 4:** The noncausal VARFIMA(0, *D*, *q*) series has a general phase parameter, and is identifiable.
- **Result 5:** The autocovariance matrix function of the noncausal VARFIMA(0, *D*, *q*) series has an explicit form.

Models with SRD components

Define the noncausal VARFIMA(p, D, q) and FIVARMA(p, D, q) series as

 $\Phi(B)X_n = \Delta_c(B)^{-1}\Theta(B)\eta_n,$ $\Phi(B)\Delta_c(B)X_n = \Theta(B)\eta_n,$

where $\Phi(B) = I_2 + \Phi_1 B + \ldots + \Phi_q B^q$ is the AR matrix polynomial.

Remark 5: The noncausal VARFIMA(p, D, q) has a general phase parameter, and is identifiable if the same VARMA(p, q) model is also identifiable.

Focus on models with diagonal Φ .

- Motivation from VARMA literature
- FIVARMA series can be written as VARFIMA series with diagonal Φ .
- If Φ is nondiagonal, X_n can be thought to exhibit a form of *fractional* cointegration.

CLDL algorithm for noncausal VARFIMA(p, D, q)

Let $\theta = (d_1, d_2, c, U, \Theta')'$.¹ Write the VARFIMA(p, D, q) series as

 $\Phi(B)X_n = Y_n, \qquad Y_n = \Delta_c(B)\Theta(B)\eta_n.$

The likelihood function of $\{Y_n\}_{n=p+1,...,N}$ conditional on X_1,\ldots,X_p , Φ is

$$L(\Phi, \theta; X_n | X_1, \dots, X_p) \equiv L(\theta; \Phi(B)X_n), \quad n = p + 1, \dots, N.$$

The conditional likelihood estimators of Φ and θ are then given by

$$(\widehat{\Phi},\widehat{\theta}) = \operatorname*{argmax}_{\Phi,\theta\in S} L(\Phi,\theta;X_n|X_1,\ldots,X_p),$$

where $S = \{\theta : 0 < d_1, d_2 < 0.5, -1 < c < 1\}$ denotes the parameter space for θ . For fixed Φ , the likelihood is computed through the multivariate Durbin-Levinson algorithm.

 $^{{}^{1}\}Sigma = U'U$, where U is upper triangular

Simulation-VARFIMA(0, D, 0)

Figure: Sample size N = 200, 100 replications. Dotted lines indicate median over all replications while black lines indicate true parameter values.

July 6, 2015 18 / 21

• Causal VARFIMA(1, D, 0), Sela 2010

$$\begin{aligned} g_t &= 0.30g_{t-1} + 0.43s_{t-1} + \eta_{1t}, \\ s_t &= -0.02g_{t-1} - 0.31s_{t-1} + \eta_{2t}, \end{aligned}$$

with $\widehat{d}_1 = 0.21, \widehat{d}_2 = 0.48$ and $\widehat{\Delta}_0(B)\eta_t \sim N(0, \widehat{\Sigma}_\eta).$

Noncausal VARFIMA(1, D, 0)

$$\begin{array}{rcl} g_t &=& 0.18g_{t-1} + 0.03s_{t-1} + e_{1t}, \\ s_t &=& 0.09g_{t-1} - 0.49s_{t-1} + e_{2t}, \end{array}$$

with $\hat{d}_1 = 0.18$, $\hat{d}_2 = 0.36$, $\hat{c} = 0.53$ and $\hat{\Delta}_c(B)e_t \sim N(0, \hat{\Sigma}_e)$. The corresponding phase estimate is $\hat{\phi} = -1$.

Robinson, P. M. (2008), 'Multiple local Whittle estimation in stationary systems', AoS 36(5), 2508-2530.

Pai, J. & Ravishanker, N. (2009), 'A multivariate preconditioned conjugate gradient approach for MLE in vector long memory processes', SPL 79, 1282–1289.

Sela, R. J. & Hurvich, C. M. (2009), 'Computationally efficient methods for two multivariate fractionally integrated models', JTSA 30(6), 631–651.

Tsay, W. J. (2010), 'Maximum likelihood estimation of stationary multivariate ARFIMA processes', JSCS 80(7), 729745.

Kechagias, S. & Pipiras, V. (2015), 'Definitions and representations of multivariate long-range dependent time series', JTSA 36(1), 1–25.

Kechagias, S. & Pipiras, V., 'Inference and applications of a bivariate long-range dependent time series model with general phase', *Preprint*, http://stefanos.web.unc.edu/.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Fractional cointegration models
- Trigonometric power law coefficients and other causal models
- Multivariate identifiable LRD models with general phase
- Invertibility of $\Delta_c(B)^{-1}$
- Assess the forecasting performance of general phase models