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Bivariate LRD - Motivation from real data
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Figure: Annualized monthly U.S. inflation rates for goods (left) and services (right)
from February 1956 to January 2008.
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Bivariate LRD - Motivation from real data
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Figure: Sample autocorrelation functions of U.S. inflation rates in goods (left) and in
services (right).

Slow decay of the two acf’s hints towards long-range dependence.

Services inflation appears to have longer memory than goods inflation.
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Bivariate LRD - Motivation from real data
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Figure: Left: Sample crosscorrelation function of U.S. inflation rates in goods and
services. Right: Imaginary part of cross periodogram.

ℑ(I12(λ)) > 0 (for λ close to 0) implies asymmetry in the series

We need LRD models that allow for general asymmetry behavior
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Definitions of bivariate long-range dependent series

We start with some notation:

{Xn}n∈Z={(X1,n,X2,n)
′}n∈Z is a bivariate, zero mean, second-order

stationary time series

γ(n) = EX0X
′

n is the autocovariance matrix of {Xn}n∈Z

f (λ) is the spectral density matrix of {Xn}n∈Z satisfying

γ(n) =

∫ π

−π

e inλf (λ)dλ.

{ǫn}n∈Z is a bivariate WN with Eǫnǫ
′

n = I .
{ηn}n∈Z is a bivariate WN with Eηnη

′

n = Σ

The definitions and models of the time series we will discuss involve the
so-called long-range dependent parameters d1, d2 ∈ (0, 1/2).
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Definitions of bivariate LRD series

A bivariate stationary time series is LRD if

Time domain: As k → ∞, its autocovariance matrix γ(k) satisfies

γ(k) =

(
γ11(k) γ12(k)
γ21(k) γ22(k)

)
∼

(
R11k

2d1−1 R12k
d12−1

R21k
d12−1 R22k

2d2−1

)
,

where R = (Rjk)j ,k=1,2 is some 2× 2 real matrix and d12 = d1 + d2.

Spectral domain: As λ→ 0+, its spectral density matrix f (λ) satisfies

f (λ) =

(
f11(λ) f12(λ)
f21(λ) f22(λ)

)
∼

(
g11λ

−2d1 g12e
iφλ−d12

g12e
−iφλ−d12 g22λ

−2d2

)
,

where g11, g12, g22 ∈ R and the phase parameter φ ∈ (−π, π].

Note: The spectral domain definition contains 6 parameters.
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Definitions of bivariate LRD series

Remark 1: The phase parameter is unique to LRD. Indeed, for
short-range dependent series f (λ) = (2π)−1

∑
∞

k=−∞
e−ikλγ(k)

and f (0) = (2π)−1
∑

∞

k=−∞
γ(k) has real entries.

Remark 2: Under mild assumptions (and letting G12 = g12e
iφ)

f12(λ) ∼
λ→0+

G12λ
−2d12 ⇔ γ12(k) ∼

k→∞

R12k
d12−1,

with

φ = −atan

{
R12 − R21

R12 + R21
tan

(
πd12
2

)}
.

Remark 3: φ = 0 ⇔ R12 = R21. This corresponds to γ12(k) being
symmetric at the two tails, that is γ12(k) ∼

k→∞

γ21(k) = γ12(−k).
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Bivariate LRD models

A common model for bivariate LRD series is the VARFIMA(0,D, 0)
defined as

Xn =

(
X1,n

X2,n

)
=

(
(I − B)−d1η1,n
(I − B)−d2η2,n

)
= (I−B)−Dηn = (I−B)−DQ+ǫn,

where D = diag(d1, d2), ηn ∼ WN(0,Σ), Σ = Q+Q
′

+,BXn = Xn−1

Fact: The spectral density matrix of the VARFIMA series above
satisfies

f (λ) ∼
(

g11λ
−2d1 g12e

−iφλ−d12

g12e
iφλ−d12 g22λ

−2d2

)
, as λ→ 0+,

with the special phase parameter φ = π
2 (d1 − d2).

Question: Can one define a bivariate LRD model that allows for general

phase parameter? Will such a model yield better predictions?
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Bivariate LRD models
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Figure: Left: Local Whittle estimates of d1, d2 for the inflation data plotted as functions
of a tuning parameter m = N0.25

, . . . ,N0.9, where N is the sample size. Right: Local
Whittle phase estimates, one corresponding to the VARFIMA (dashed line) and one
estimated directly from the data (solid line).
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Causal VARFIMA(0,D, 0)

The VARFIMA(0,D, 0) series Xn = (I − B)−DQ+ǫn has a causal or

one-sided linear representation of the form

Xn =
∑

m∈I

Ψmǫn−m, (1)

where I = Z
+ and the entries (ψjk,m)j ,k=1,2 of {Ψm}j∈Z satisfy

ψjk,m ∼
m→∞

α+
jk |m|dj−1, for some α+

jk ∈ R. (2)

Fact: The causal series (1) with power-law coefficients (2) always has
the special phase φ = π

2 (d1 − d2).

Question: How can we modify (1) to obtain a series with general phase?
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General Phase LRD models

Result 1: A bivariate LRD series with general phase can be
constructed by taking I = Z in (1) and Ψm as in (2) with m → ∞
and m → −∞ (noncausal or two-sided series).

Result 2: A causal bivariate LRD series with general phase can be
constructed by taking trigonometric power law coefficients

ψjk,m = αjkm
−bk cos(2πma) + βjkm

−bk sin(2πma), m ≥ 0,

where αjk , βjk ∈ R, 0 < a < 1, 1
2 < bk ≤ 1− 1

2a, j = 1, 2.

Question: What about a parametric bivariate LRD model with general

phase?
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Noncausal VARFIMA(0,D, 0)

Define the bivariate noncausal VARFIMA(0,D, 0) series as

Xn =
(
(I − B)−DQ+ + (I − B−1)−DQ−

)
ǫn,

where Q+, Q− are two real-valued 2× 2 matrices.

Result 3: The noncausal VARFIMA(0,D, 0) series has a general
phase. Moreover, its autocovariance function has an explicit form.

The noncausal VARFIMA(0,D, 0) series has 10 parameters. This
causes identifiability problems as the same φ can be obtained by more
than one choice of Q+,Q−.
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Noncausal VARFIMA(0,D, 0)

Taking

Q− = CQ+, C =

(
c 0
0 −c

)
,

leads to the noncausal VARFIMA(0,D, 0) series

Xn = ∆c(B)−1ηn,

∆c(B)−1 := (I − B)−D + (I − B−1)−DC .

Result 4: For any φc ∈ (−π/2, π/2), ∃! c ∈ (−1, 1) such that Xn has
the phase parameter φ = φc . Moreover, c has a closed form given by

c =
2(a1 + a2)−

√
∆

2(a1 − a2 − tan(φc))(1 + a1a2)
,

where ak = tan
(
πdk
2

)
, and ∆ = 16a1a2 + 4(1 + a1a2)

2 tan2(φc ).
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Models with SRD components

Define the noncausal VARFIMA(0,D, q) series as

Yn = ∆c(B)−1Θ(B)ηn,

where Θ(B) = I2 +Θ1B + . . .+ΘqB
q is the MA matrix polynomial.

Remark 4: The noncausal VARFIMA(0,D, q) series has a general
phase parameter, and is identifiable.

Result 5: The autocovariance matrix function of the noncausal
VARFIMA(0,D, q) series has an explicit form.
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Models with SRD components

Define the noncausal VARFIMA(p,D, q) and FIVARMA(p,D, q)
series as

Φ(B)Xn = ∆c(B)−1Θ(B)ηn,

Φ(B)∆c(B)Xn = Θ(B)ηn,

where Φ(B) = I2 +Φ1B + . . .+ΦqB
q is the AR matrix polynomial.

Remark 5: The noncausal VARFIMA(p,D, q) has a general phase
parameter, and is identifiable if the same VARMA(p, q) model is also
identifiable.

Focus on models with diagonal Φ.

Motivation from VARMA literature
FIVARMA series can be written as VARFIMA series with diagonal Φ.
If Φ is nondiagonal, Xn can be thought to exhibit a form of fractional
cointegration.
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CLDL algorithm for noncausal VARFIMA(p,D, q)

Let θ = (d1, d2, c ,U,Θ
′)′.1 Write the VARFIMA(p,D, q) series as

Φ(B)Xn = Yn, Yn = ∆c(B)Θ(B)ηn.

The likelihood function of {Yn}n=p+1,...,N conditional on X1, . . . ,Xp, Φ is

L(Φ, θ;Xn|X1, . . . ,Xp) ≡ L(θ; Φ(B)Xn), n = p + 1, . . . ,N.

The conditional likelihood estimators of Φ and θ are then given by

(Φ̂, θ̂) = argmax

Φ,θ∈S

L(Φ, θ;Xn|X1, . . . ,Xp),

where S = {θ : 0 < d1, d2 < 0.5, −1 < c < 1} denotes the parameter
space for θ. For fixed Φ, the likelihood is computed through the
multivariate Durbin-Levinson algorithm.

1Σ = U ′U, where U is upper triangular
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Simulation-VARFIMA(0,D, 0)
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Figure: Sample size N = 200, 100 replications. Dotted lines indicate median over all
replications while black lines indicate true parameter values.
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Application to inflation data

Causal VARFIMA(1,D, 0), Sela 2010

gt = 0.30gt−1 + 0.43st−1 + η1t ,
st = −0.02gt−1 − 0.31st−1 + η2t ,

with d̂1 = 0.21, d̂2 = 0.48 and ∆̂0(B)ηt ∼ N(0, Σ̂η).

Noncausal VARFIMA(1,D, 0)

gt = 0.18gt−1 + 0.03st−1 + e1t ,
st = 0.09gt−1 − 0.49st−1 + e2t ,

with d̂1 = 0.18, d̂2 = 0.36, ĉ = 0.53 and ∆̂c(B)et ∼ N(0, Σ̂e). The
corresponding phase estimate is φ̂ = −1.
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Future work

Fractional cointegration models

Trigonometric power law coefficients and other causal models

Multivariate identifiable LRD models with general phase

Invertibility of ∆c(B)−1

Assess the forecasting performance of general phase models
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