Multivariate count time series with flexible autocovariances

Stefanos Kechagias (joint work with Vladas Pipiras, James Livsey and Robert Lund)

SAS Institute

USF Seminar Series in Analytics February 24, 2017

Part 1

- Motivation for a bivariate count time series model
- Review of long memory

Part 2

- Model construction
- Quasi-maximum likelihood inference
- Data application
- Future work

.∋...>

Examples of correlated counts observed at different time points

- Number of patients with different but related symptoms
- Occurrences of physical phenomena at different locations
- Number of occurrences of various crime types
- Number of trades of different stocks in a portfolio

Capturing both serial and cross-correlation complicates model specification and inference.

Motivations from data

Figure: Left: Annual number of Saffir-Sampson category 3 and stronger hurricanes in North Pacific and North Atlantic Basins. Right: Theoretical/sample (red, green/blue) ccfs of the numbers of major hurricanes in the Atlantic and the Pacific.

- Negative cross correlation
- NA consistent with Poisson assumption, NP somewhat overdispersed

Motivation from data

Figure: Sample (blue lines) and theoretical (red, green lines) auto-correlation functions of major hurricane counts in the Atlantic and Pacific Basins.

• Slow decay of dependence?

We would like to have a model that captures all 3 features.

Bivariate Poisson $BP(\theta_1, \theta_2, \theta_0)$

$$P(y_1, y_2) = e^{-(\theta_1 + \theta_2 + \theta_0)} \frac{\theta_1^{y_1}}{y_1!} \frac{\theta_2^{y_2}}{y_2!} \sum_{s=0}^{\min(y_1, y_2)} {y_1 \choose s} {y_2 \choose s} s! \left(\frac{\theta_0}{\theta_1 \theta_2}\right)^s$$

- Poisson $(\theta_i + \theta_0)$ marginals, covariance θ_0
- Computationally intensive for large counts, positive correlation
- BP(θ₁, θ₂, 0), (θ₁, θ₂) ~ logNormal. Positive and negative correlation but marginals require numerical integration
- multivariate case?

• INAR(1) model

$$Y_t = \alpha \circ Y_{t-1} + R_t,$$

 $\alpha \in [0, 1]$, R_t uncorrelated, nonnegative, integer-valued random variables. The thinning operator \circ is defined as

$$lpha \circ Y = \sum_{i=1}^{Y} Z_i, \quad Z_i \sim \mathsf{Bernoulli}(lpha)$$

• BINAR(1)

$$\left[\begin{array}{c} Y_{1t} \\ Y_{2t} \end{array}\right] = \left[\begin{array}{c} \alpha_1 & 0 \\ 0 & \alpha_2 \end{array}\right] \circ \left[\begin{array}{c} Y_{1,t-1} \\ Y_{2,t-1} \end{array}\right] + \left[\begin{array}{c} R_{1t} \\ R_{2t} \end{array}\right]$$

• positive mean, variance and autocovariance

- $X = \{X_n\}_{n \in \mathbb{Z}}$ is a zero mean, second-order stationary time series
- $\rho(k) = \mathbb{E} X_n X_{n+k}, k \in \mathbb{Z}$, is the autocorrelation function of X
- $\{\epsilon_n\}_{n\in\mathbb{Z}}$ is a WN series with $\mathbb{E}\epsilon_n^2 = 1$.
- $a_n \sim b_n$ implies that $a_n/b_n \rightarrow 1$ as $n \rightarrow \infty$.

The definitions and models of the time series we will discuss involve the so-called *long-range dependent* parameter $d \in (0, 1/2)$.

イロト 不得下 イヨト イヨト 二日

Consider the following two **non-equivalent** conditions:

I.
$$X_n$$
 admits the form $X_n = \sum_{k=0}^{\infty} \psi_k \epsilon_{n-k}$, $\psi_k \underset{k \to \infty}{\sim} c_1 k^{d-1}$
II. The acf of X_n satisfies $\rho(k) \sim c_2 k^{2d-1}$ as $k \to \infty$.

- X_n is called *long-range dependent* if one of the conditions I–II holds.
- Conditions I,II, imply that $\sum_{k=-\infty}^{\infty} |\rho(k)| = \infty$.
- A series with $\sum_{k=-\infty}^{\infty} |\rho(k)| < \infty$ is called *short-range dependent*.

Characterization	LRD	SRD		
$\sum_{k=-\infty}^\infty ho(k) $	∞	$<\infty$		
ho(k)	k^{2d-1}	$O(e^{-lpha k})$		
$\sum_{k=0}^{\infty} \psi_k \epsilon_{n-k}$	$\psi_{\mathbf{k}} \sim \mathbf{k}^{\mathbf{d}-1}$	$O(e^{-lpha k})$		
$Var(\overline{X}_N)$	N^{2d-1}	N^{-1}		

Question: How does the last relation affect inference?

æ

イロト イ理ト イヨト イヨトー

Some examples of LRD series

ም.

-∢ ∃ ▶

Some examples of LRD series

.∋...>

ARFIMA(0, d, 0) - A parametric LRD model

• If $d \in \mathbb{Z}^+$, then $\{X_n\}_{n \in \mathbb{Z}}$ is said to be an ARIMA(0, d, 0) process if

$$(I-B)^d X_n = \epsilon_n, \tag{1}$$

• If $d \in (0, 1/2)$ we interpret the solution of (1) as

$$X_n = (I - B)^{-d} \epsilon_n = \sum_{k=0}^{\infty} b_k B^k \epsilon_n = \sum_{k=0}^{\infty} b_k \epsilon_{n-k},$$

• $b'_k s$ are the Taylor coefficients of $(1-z)^{-d}$ and satisfy

$$b_k = rac{\Gamma(k+d)}{\Gamma(k+1)\Gamma(d)} \mathop{\sim}\limits_{k
ightarrow\infty} k^{d-1}, \quad \sum_{k=0}^\infty b_k^2 < \infty.$$

- $\{X_n\}_{n\in\mathbb{Z}} = \{(X_{1,n}, X_{2,n})'\}_{n\in\mathbb{Z}}$ is a bivariate, zero mean, second-order stationary time series
- ρ_{ij}(k) = EX_{i,n}X_{j,n+k}, i, j = 1, 2 is the (i, j) component of the
 autocorrelation matrix function
- $\{\epsilon_n\}_{n\in\mathbb{Z}} = \{(\epsilon_{1,n}, \epsilon_{2,n})'\}_{n\in\mathbb{Z}}$ is a bivariate WN with $\mathbb{E}\epsilon_n\epsilon'_n = \Sigma$.

The definitions and models of the time series we will discuss involve the so-called *long-range dependent* parameters $d_1, d_2 \in (0, 1/2)$.

・ロト ・四ト ・ヨト ・ヨトー

Definitions of bivariate LRD series

• Time domain definition of bivariate LRD

$$p_{ij}(h) \sim R_{ij}h^{d_i+d_j-1}, \quad h \to \infty,$$

where $R_{ij} \in \mathbb{R}$, i, j = 1, 2.

• VARFIMA(0, D, 0) model, $D = \text{diag}(d_1, d_2)$.

$$\boldsymbol{X_n} = \begin{pmatrix} X_{1,n} \\ X_{2,n} \end{pmatrix} = \begin{pmatrix} (I-B)^{-d_1} \epsilon_{1,n} \\ (I-B)^{-d_2} \epsilon_{2,n} \end{pmatrix} = (I-B)^{-D} \epsilon_n,$$

• The acmf has the exact form

$$\rho_{ij}^{X}(h) = \sigma_{ij} \frac{(-1)^{h} \Gamma(1 - d_{i} - d_{j})}{\Gamma(1 - d_{i} + h) \Gamma(1 - d_{j} - h)}, \ i, j = 1, 2.$$

Bivariate Count LRD model

1. Let X_t be a bivariate LRD series with a mf $\rho^X(h), h \in \mathbb{Z}$ and

$$X_t \sim N_2\left(0, \left(egin{array}{cc} 1 &
ho \
ho & 1 \end{array}
ight)
ight), \quad
ho =
ho^X(0).$$

2. Place the components of X into categories:

$$S_t = (S_{1,t}, S_{2,t})'_{t \in \mathbb{Z}} = (1_{\{X_{1,t} > 0\}}, 1_{\{X_{2,t} > 0\}})'_{t \in \mathbb{Z}},$$

Fact: The series $\{S_t\}_{t\in\mathbb{Z}}$ is stationary with $\mathbb{E}S_t = (1/2, 1/2)'$ and

$$\rho_{ij}^{S}(h) = \frac{1}{2\pi} \operatorname{asin}(\rho_{ij}^{X}(h)), \quad h \in \mathbb{Z}.$$

Remark 1: $P(X_{i,t} > 0, X_{j,t+h} > 0) = \frac{1}{4} + \operatorname{asin}(\rho_{ij}^X(h))/2\pi$. Remark 2: $\operatorname{asin}(z) \underset{z \to 0}{\sim} z$ and so S_t is LRD if X_t is LRD.

Figure: Left: One realization of the series $S_{1,t}$ with sample size N = 200. The underlying process $X_{1,t}$ is a Gaussian FARIMA(0,0.4,0). Right: Sample acf $\hat{\rho}^{S}(h)$ for lags $h = 0, \ldots, 40$. The blue lines indicate the 95% confidence interval.

Binomial marginal distributions

3. Superimpose IID copies of S_t

Binomial marginals

Let $\{S_{1,t}^{(k)}, S_{2,t}^{(k)}\}_{k=1}^{\infty}$ be a sequence of IID copies of S_t . Then the series Y_t with components

$$Y_{i,t} = \sum_{k=1}^{M} S_{i,t}^{(k)}, \quad i = 1, 2,$$

has Binomial(M, 1/2) univariate marginal distributions with

$$\rho^{Y}(h) = M \rho^{S}(h), \quad h \in \mathbb{Z}.$$

Long memory of S_t implies that Y_t is also LRD.

Poisson marginals

Consider the series $\{Y_t\}_{t\in\mathbb{Z}} = \{(Y_{1,t}, Y_{2,t})'\}_{t\in\mathbb{Z}}$ with

$$Y_{i,t} = \sum_{k=1}^{N_{i,t}} S_{i,t}^{(k)}, \quad N_{i,t} \stackrel{\text{ind}}{\sim} \text{Poisson}(\lambda_i), \quad \lambda_i > 0.$$

Fact: The series Y_t is stationary with $\mathbb{E}Y_t = (\lambda_1/2, \lambda_2/2)'$ and

$$\rho_{ij}^{Y}(h) = \frac{1}{2\pi} c_{ij} \operatorname{asin}(\rho_{ij}^{X}(h)),$$

$$c_{ij}=\left\{egin{array}{ll} 2\lambda_i,&i=j,h=0,\ \lambda_iF_{W_{ij}}(-1)+\lambda_j(1-F_{W_{ij}}(1)),&i
eq j, \end{array}
ight.$$

where $W_{ij} \sim \text{Skellam}(\lambda_i, \lambda_j) = \text{Poisson}(\lambda_i) - \text{Poisson}(\lambda_j)$.

Sketch Proof

Joint pmf of $N_{i,t}, N_{j,t+h}$: $p_{ij}(h) = P(N_{i,t} = n_i, N_{j,t+h} = n_j)$.

$$\begin{split} \mathbb{E}Y_{i,t}Y_{j,t+h} &= \mathbb{E}\Big(\mathbb{E}\sum_{m=1}^{n_i} S_{i,t}^{(m)} \sum_{k=1}^{n_j} S_{j,t+h}^{(k)} \Big| N_{i,t} = n_i, N_{j,t+h} = n_j\Big) \\ &= \sum_{n_i,n_j=0}^{\infty} \mathbb{E}\Big(\sum_{m=1}^{n_i} S_{i,t}^{(m)} \sum_{k=1}^{n_j} S_{j,t+h}^{(k)} \Big| N_{i,t} = n_i, N_{j,t+h} = n_j\Big) p_{ij}(h) \\ &= \sum_{n_i,n_j=0}^{\infty} \Big(M_{ij} \frac{\arcsin(\rho_{ij}^X(h))}{2\pi} + \frac{\Pi_{ij}}{4} \Big) p_{ij}(h) \\ &= \frac{1}{2\pi} \arcsin(\rho_{ij}^X(h)) \mathbb{E}\min(N_{i,t}, N_{j,t+h}) + \frac{1}{4} \mathbb{E}N_{i,t}N_{j,t+h}. \end{split}$$

M_{ij} = min(n_i, n_j) cross products of S^(m)_{i,t} and S^(k)_{j,t+h} for m = k
Π_{ij} - M_{ij} cross products of S^(m)_{i,t} and S^(k)_{j,t+h} for m ≠ k, Π_{ij} = n_in_j

Statistical Inference

Let $\mathbf{Y}_N = (Y_1 \dots, Y_N)'$ with $\Gamma_N = \mathbb{E} \mathbf{Y}_N \mathbf{Y}'_N$.

• Gaussian log-Likelihood

$$\ell(\Gamma_N) \propto -rac{1}{2} \log |\Gamma_N| - rac{1}{2} \mathbf{Y}^T \Gamma_N^{-1} \mathbf{Y}_N$$

• It can be rewritten as

$$\ell(\theta; \mathbf{Y}_N) \propto -\frac{1}{2} \sum_{j=1}^N \log |V_{j-1}| - \frac{1}{2} \sum_{j=1}^N (Y_j - \widehat{Y}_j)' V_{j-1}^{-1} (Y_j - \widehat{Y}_j),$$

where $\widehat{Y}_j = \mathbb{E}(Y_j | Y_1, \dots, Y_{j-1}), V_{j-1} = \mathbb{E}(Y_j - \widehat{Y}_j) (Y_j - \widehat{Y}_j)'$

• \widehat{Y}_j , V_{j-1} can be computed can be computed from $\rho^Y(h)$ in $O(N^2)$.

Let $\Phi(z), \Theta(z)$ be the typical AR, MA polynomials with orders p, qLRD model: $\Phi(B)X_n = (I - B)^{-D}\Theta(B)\epsilon_n$, with $p, q \leq 1$ Parameter: $\theta = (d_1, d_2, \lambda_1, \lambda_2, \rho, \text{vec}(\Phi), \text{vec}(\Theta))$. Quasi-MLE: $\hat{\theta} = \underset{\alpha}{\operatorname{argmax}} \ell(\theta; Y)$

Computational issues

- The entries of $\Sigma, \ \Phi, \ \Theta$ appear in nonlinear constraints.
- We assumed marginal unit variances and a prescribed correlation for X. What parameters σ_{ij} ensure that?
- What if the desired σ_{ij} do not satisfy the constraints?

イロト 不得下 イヨト イヨト 二日

Figure: Boxplots of the estimates for $(p, q) = (0, 0)_1$ (left box), (0, 1) (middle box) and (1, 0) (right box) T = 400 and 100 replications. The dashed blue lines correspond to the true parameter values, while the solid red lines are the medians.

Simulation results

(<i>p</i> , <i>q</i>)	(0,0)		(1,0)		(0,1)	
Т	200	400	200	400	200	400
<i>d</i> ₁	-0.011	-0.010	-0.029	-0.039	0.059	0.069
	0.082	0.059	0.138	0.107	0.057	0.038
d ₂	-0.026	0.009	-0.019	-0.190	0.071	0.085
	0.093	0.065	0.183	0.179	0.070	0.047
λ_1	-0.046	-0.021	-0.049	-0.065	-0.024	-0.013
	0.273	0.229	0.309	0.338	0.231	0.199
λ_2	0.029	0.023	-0.077	-0.035	-0.023	0.010
	0.157	0.125	0.228	0.165	0.156	0.149
ρ	0.072	0.045	-0.002	0.042	0.060	-0.011
	0.218	0.155	0.196	0.163	0.110	0.050
$\Phi_{1,1}/\Theta_{1,1}$			0.069	0.248	-0.004	-0.017
			0.243	0.267	0.021	0.023
$\Phi_{1,2}/\Theta_{1,2}$			0.017	-0.090	0.165	0.145
			0.241	0.178	0.085	0.086
$\Phi_{2,1}/\Theta_{2,1}$			-0.023	-0.071	0.130	0.133
			0.158	0.168	0.069	0.047
$\Phi_{2,2}/\Theta_{2,2}$			0.052	0.088	0.029	0.032
			0.148	0.140	0.020	0.022

Table: MB and MAD of estimated parameters. True parameter values are $d_1 = 0.3, d_2 = 0.2, \lambda_1 = 3, \lambda_2 = 2 \ \rho = -0.9, \ \Phi_{1,1} = 0.4, \Phi_{1,2} = 0.1, \ \Phi_{2,1} = 0.3, \ \Phi_{2,2} = 0.6, \ \Theta_{1,1} = 0.1, \Theta_{1,2} = -0.6, \ \Theta_{2,1} = 0.2, \Theta_{2,2} = 0.8.$

イロト イポト イヨト イヨト

Data application

Figure: Left: Annual number of Saffir-Sampson category 3 and stronger hurricanes in NP and NA Basins. Right: Theoretical/sample ccfs

•
$$\bar{x}_{Atl} = 2.31, s^2_{Atlantic} = 2.97, \ \bar{x}_{Pac} = 3.10, s^2_{Pacific} = 5.76$$

• $IC_{(0,D,0)} < IC_{(1,D,0)}$. For $(1, d, 0) |\Sigma| < 0$ when $\rho < -0.7$.
• $\hat{d}_1 = 0.24, \ \hat{d}_2 = 0.23, \ \hat{\lambda}_1 = 5.7, \ \hat{\lambda}_2 = 11.5, \ \hat{\rho} = -0.96, \ (\hat{\rho}_Y = -0.28)$

Other marginal distributions

- 1. If $N_{i,t} \sim \text{Geo}(\alpha)$ then $Y_{i,t} \sim \text{Geo}(\gamma)$, $\alpha = 2\gamma/(\gamma + 1)$.
- 2. Using the fact above we can also obtain a NB marginal.
- 3. For $DU(\{u_1, ..., u_D\})$ pick $r_1, ..., r_D$

$$P(r_{k-1,i} < X_{i,t} < r_{k,i}) = \frac{1}{D},$$
(2)

and take the series

$$U_{t,i} = \sum_{k=0}^{D-1} u_k \mathbf{1}_{[r_{k,i} < X_{i,t} < r_{k+1,i}]}$$

For the latter we cannot use the quadrant Normal probabilities to obtain an exact form for the acv function.

- 4 同 6 4 日 6 4 日 6

- 1. Negative correlation, arbitrary marginals, LRD behavior
- 2. From bivariate to multivariate?
- 3. Other estimation methods (Pseudo-Likelihood, Bayesian, etc.)
- 4. Performance under misspecification and forecasting power

References

- Beran, et al., Long-Memory Processes. Springer, Heidelberg, 2013.
- Davis et al., eds. *Handbook of Discrete-Valued Time Series*. CRC Press, 2016.
- Livsey et al., *Multivariate count time series with flexible autocovariances*. Submitted