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Motivation - Dependent count time series

Figure: Yearly counts of no-hitter baseball games from 1875 to 2017.

• Over-dispersed time series of counts

• Negative Binomial, Generalized Poisson or some other distribution?
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Motivation - Dependent count time series
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• Possible dependence across time

We need count time series (cts) models that allow for flexible dependence
structure and can produce any prescribed marginal distribution.
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Copula transformation and latent Gaussian variable

• {Zt}t∈Z: stationary, correlated, standard Gaussian series with cdf Φ.
{Xt}t∈Z: stationary cts with desired marginal cdf F (x) = P(Xt ≤ x).

• We model {Xt} as

Xt = G (Zt), G (x) = F−1(Φ(x)), x ∈ R, (1)

where F−1 is the generalized inverse (quantile function) of F .

• By construction {Xt} has marginal cdf F for each t.

How can we associate the dependences structure of {Zt} and {Xt}?
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Linking dependence through acfs

• Idea: Try to link the acfs ρZ and ρX of the two series as

ρX (h) = `(ρZ (h))

through some function ` : [−1, 1]→ [−a, 1], 0 < a < 1.

• ` should be 1− 1, feasibly computed, and yield large values of a.

• Solution: Expand G using Hermite polynomials (HP)

G (z) =
∞∑
k=1

gkHk(z),

H0 = 1, H1 = z , H2 = z2 − 1, H3 = z3 − 3z , H4 = z4 − 6z2 + 3.
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HP properties

Hk(z) = (−1)kez
2/2 dk

dzk
e−z

2/2,

1. HP form an orthogonal basis in L2(R, φ), G (Zt) =
∞∑
k=1

gkHk(Zt)

2. Cov(Hk(Zt),Hk(Zt+h)) = k!ρZ (h)k

3. Cov(G (Zt),G (Zt+h)) =
∞∑
k=0

k!g2
k ρZ (h)k , gk =

1

k!
E[G (Z0)Hk(Z0)]

Stefanos Kechagias Count time series 7 / 19



Link function & link coefficients

• We associate the acfs ρZ and ρX of the series {Zt} and {Xt} as

ρX (h) =
∞∑
k=1

k!g2
k

σ2
X

ρZ (h)k = `(ρZ (h)), `(u) =
∞∑
k=1

`ku
k ,

where `(·) and `k are called link function and link coefficients LC.

How flexible is the resulting dependence structure?
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Link function properties

• Short memory in Zt passes on to Xt

• Long memory in Zt is also inherited in Xt for most marginals.

• `(·) yields the largest negative attainable correlation between two
variables Xt1 ,Xt2 with the same marginal distribution.

How should we calculate `k and `?
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Calculating LC

Letting Cn = P(Xt ≤ n) and using HP properties we derive

gk =
1

k!
√

2π

∞∑
n=0

e−Φ−1(Cn)2/2Hk−1(Φ−1(Cn)). (2)

1. (2) converges for processes with finite variance (not obvious).

2. For fairly light-tailed Cn, Cn ≈ 1 for n > M for small/moderate M.

3. Truncation, HP asymptotics and Stirling’s formula yield as k →∞

gk(k!)1/2 ∼ 2−1/4

(πk)3/4

M−1∑
n=0

e−
Φ−1(Cn)2

4 cos

(
Φ−1(Cn)

√
k − 1− (k − 1)π

2

)
,

an approximation we found to be accurate even for moderate k .
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Plotting LC and LF for Poisson(λ)
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1. λ ≥ 1: `1 carries all the weight of the LC (left) and `(u) ≈ u (right).

2. λ < 1: weight spreads across many LC negative ρX are impossible.
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Inference

• θ, η : marginal distribution and latent Gaussian acf parameters

• We approximate the likelihood

LT (θ,η) = P(X0 = x0,X1 = x1, . . . ,XT = xT )

in two ways, through Gaussian likelihood and particle filtering (PF).

• To use PF approximation we write

LT (θ,η) = P(X0 = x0)
T∏
s=1

EX (ws(Ẑs|s−1)), (3)

where ws is easily computed from DL quantities and the cdf of Xt .
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Connection with HMM

1. When Zt is an AR(p) process, our model is an HMM.

2. Generate particles Z i
t and compute weights w i

t , i = 1, . . . ,N, using
PF sampling algorithms (SIS, SISR, APF).

3. We can then approximate EX [f (Ẑt|t+1)] for some function f , and L as

ÊX f (Ẑt+1|t) =
1
N

∑N
i=1 w

i
t f (Ẑ i

t+1)
1
N

∑N
i=1 w

i
t

,

L̂T (x0, . . . , xT ) = P(X0 = x0)
T∏
s=1

ÊX (ws(Ẑs|s−1)),
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Simulations-Poisson-AR(1)
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Figure: Estimates from simulated Poisson(2)–AR(1) series with true φ = 0.75 (left) a
and φ = −0.75 (right) for sample sizes N= 100, 200, and 400.
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Simulations-Mixed Poisson-AR(1)
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Simulations-Mixed Poisson-AR(1)
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Figure: Estimates from Mixed Poisson(2,10)–AR(1) series with p = 0.25, φ = 0.75
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Application to no-hitter data

1. We use Gen. Poisson(η, λ) (overdispersion) and AR(1) (see pacf).

2. We also add two covariates: M1 the # of games played in a season,
and M2 the height of the pitching mound to the model through

λt = exp (β0 + β1M1,t + β2M2,t)

Parameters φ β0 β1 β2 η

GL Estimates 0.2665 -1.1496 0.7583 0.0338 0.1679
GL Standard Errors 0.0658 0.9069 0.2173 0.0436 0.0480

Parameters φ β1 η

GL Estimates 0.2456 0.4059 0.1212
GL Standard Errors 0.0621 0.0480 0.0416
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Summary

Cts model with a latent Gaussian variable

Flexible marginals and dependence structure

Connection with HMM and feasible inference

PIT and residual diagnostics
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Thank you!
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