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Abstract

Several methodological and numerical issues behind the local Whittle estimation of long and
short memory in bivariate stationary time series with possible fractional cointegration are reex-
amined. These issues include the asymptotic normality for all model parameters, local Whittle
plots for phase parameter and fractal connectivity, and others. For fractal connectivity, in par-
ticular, it is advocated to work with a model parametrization for which the model parameters
associated with this phenomenon are identifiable and could be tested naturally within the local
Whittle estimation framework. A simulation study and data applications are also considered.

1 Introduction

Our goal is to clarify a number of issues behind the local Whittle estimation in bivariate stationary
systems proposed and studied by Robinson (2008), with particular attention to long memory (see
also Nielsen (2007), Nielsen and Shimotsu (2007), Shimotsu (2007, 2012), Nielsen (2011)). More
specifically, consider a bivariate (second-order) stationary time series {Xn}n∈Z = {(X1,n, X2,n)′}n∈Z
with zero mean (for simplicity), the autocovariance matrix function γX(h) = EXn+hX

′
n, h ∈ Z,

and the spectral density matrix fX(λ) = (fX,kl(λ))k,l=1,2, λ ∈ (−π, π), assumed to exist and, by
convention, to satisfy γX(h) =

∫ π
−π e

ihλfX(λ)dλ. Suppose that as λ→ 0+,

fX(λ) =

(
fX,11(λ) fX,12(λ)
fX,21(λ) fX,22(λ)

)
∼
(
g11λ

−2d1 g12λ
−d1−d2

g21λ
−d1−d2 g22λ

−2d2

)
= λ−DGλ−D, (1.1)

where D = diag(d1, d2), −1/2 < d1, d2 < 1/2, λ−D = diag(λ−d1 , λ−d2), and G = (gkl) is Hermitian
symmetric and positive definite (i.e. g11 > 0, g22 > 0, g12 = g21 and g11g22 − |g12|2 > 0). In (1.1),
the asymptotic equivalence ∼ is entry-wise and f(λ) ∼ Cλ−p for a constant C and a power p
means that f(λ)λp → C, including the case when C = 0. For univariate series, the case d > 0
is associated with long memory, d ≤ 0 with short memory and d < 0 with anti-persistence (e.g.
Robinson (2003), Giraitis, Koul and Surgailis (2012), Beran, Feng, Ghosh and Kulik (2013), Pipiras
and Taqqu (2017)). Writing g11 = ω11 > 0, g22 = ω22 > 0, g12 = ω12e

−iφ, g21 = ω12e
iφ =: ω21e

iφ

with ω12 ∈ R, φ ∈ (−π/2, π/2) and setting Ω = (ωkl)k,l=1,2, the relation (1.1) can also be expressed
as

fX(λ) ∼ ΦD,φ(λ)−1ΩΦD,φ(λ)−1, as λ→ 0+, (1.2)
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where ΦD,φ(λ) = diag(λd1 , λd2e−iφ) and Ω is a real-valued, symmetric, positive definite matrix.
The bar above ΦD,φ in (1.2) indicates complex conjugation componentwise. The parameters d1, d2

are known as memory parameters (long-memory parameters when they are positive) and φ as a
phase parameter (at the zero frequency).

We gather the model parameters above as

Parametrization P: ω11, ω22, ω12, φ, d1, d2. (1.3)

It will also be convenient to work in

Parametrization C: ω11, ω22, r1, r2, d1, d2, (1.4)

where r1, r2 are the real and imaginary part of g12, namely satisfying r1 − ir2 = ω12e
−iφ = g12.

(The letters “P” in (1.3) and “C” in (1.4) stand for “Polar” and “Complex”, respectively.) One
reason that we are interested in Parametrization C is related to the so-called fractal connectivity,
which is associated with the case

ω12 6= 0 (1.5)

and that of fractal non-connectivity with the case ω12 = 0. See, for example, Achard, Bassett,
Meyer-Lindenberg and Bullmore (2008), Wendt, Scherrer, Abry and Achard (2009), Kristoufek
(2013), Wendt, Didier, Combrexelle and Abry (2017). But testing for fractal non-connectivity is
not possible in Parametrization P since for ω12 = 0, the model parameter φ is not identifiable.
There is no such issue in Parameterization C, where fractal connectivity ω12 6= 0 is now associated
with

r1 6= 0 or r2 6= 0, (1.6)

and the case ω12 = 0 with r1 = 0 and r2 = 0.
Working with Parametrization P, Robinson (2008) introduced and studied the local Whittle

estimators of Ω, φ and D defined as

(Ω̂, φ̂, D̂) = argmin
(Ω,φ,D)

Q(Ω, φ,D) (1.7)

with

Q(Ω, φ,D) =
1

m

m∑
j=1

(
log
∣∣ΦD,φ(λj)

−1ΩΦD,φ(λj)
−1
∣∣)+ tr

(
ΦD,φ(λj)IX(λj)ΦD,φ(λj)Ω

−1
)
, (1.8)

where |A| denotes the determinant of a matrix A, λj = (2πj)/N are the Fourier frequencies for a
sample size N ,

IX(λ) =
1

2πN

( N∑
n=1

Xne
−inλ

)( N∑
n=1

Xne
inλ
)′

(1.9)

is the periodogram of the series X and m is the number of frequencies used in estimation. The
optimization problem (1.7) is taken in theory essentially over −1/2 < d1, d2 < 1/2, φ ∈ (−π/2, π/2)
and positive definite Ω; in practice, as in their Whittle plots (e.g. Section 6 below), one often allows
d1, d2 to exceed 1/2. The asymptotic normality result for φ̂, D̂ is provided in Robinson (2008)
under suitable assumptions, in particular, on m = m(N)→∞.

Robinson (2008) also considers the case of possible fractional cointegration, where (1.1) is re-
placed by

BfX(λ)B′ ∼ λ−DGλ−D, as λ→ 0+, (1.10)
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with

B =

(
1 −β
0 1

)
, (1.11)

the case β = 0 corresponding to (1.1) with no fractional cointegration and the case β 6= 0 associated
with fractional cointegration. Furthermore, it is assumed that 0 ≤ d1 < d2 < 1/2. In the local
Whittle estimation (1.7)–(1.8), β is added as another parameter, with the negative log-likelihood
having the same form as (1.8) but replacing IX(λj) by BIX(λj)B

′. Robinson (2008) also established

the asymptotic normality of the local Whittle estimators β̂, φ̂ and D̂. We also note that the spectral
density in the fractionally cointegrated case (1.10) with β 6= 0 can be expressed as (1.1) but with
the parameters in (1.1) (not to be confused with those in (1.10)) satisfying

d1 = d2, |Ω| = ω11ω22 − ω2
12 = 0 (1.12)

(see also Remark 2.4 below). But the possibility of the second relation in (1.12) is excluded in the
asymptotics of the local Whittle estimation (1.7)–(1.8).

Local Whittle estimation plays a fundamental role in the analysis of time series, especially when
long memory is thought to be present. Our work contributes to the understanding of the estimation
method in the following ways:

• We consider the asymptotic normality result for all model parameters in Parametrization P,
and not just φ, d1, d2 as in Robinson (2008). Through a series of remarks, we also make a
number of additional points related to the established asymptotic normality result: we correct
the asymptotic covariance matrix appearing in Robinson (2008), we correct the earlier form
of normalization for some local Whittle and related estimators, and others.

• We also establish an asymptotic normality result for all model parameters in Parametrization
C. As a consequence, in connection to fractal connectivity, we suggest a test statistic that
can be used naturally to test for fractal non-connectivity r1 = 0 and r2 = 0.

• We shall also present asymptotic normality results in Parametrizations P and C with the addi-
tional parameter β, for the fractionally cointegrated model (1.10). As for the non-cointegrated
model, we again pay particular attention to fractal (non-)connectivity. For example, an anal-
ogous test statistic is suggested for testing fractal non-connectivity in the case of fractional
cointegration.

• We show that a number of considered optimization problems, such as that in (1.7), can be
reduced to problems involving fewer variables.

• In addition to the asymptotic normality results, we consider a number of issues related to local
Whittle plots. These are plots of parameter estimates and quantities of interest as functions
of the tuning parameter m in (1.8) or (3.2). In this work, we discuss what local Whittle plots,
in our view, should be considered in connection to long memory and fractal connectivity. We
also slightly modify the local Whittle plot for the phase parameter φ.

In all our asymptotic results for both parametrizations, we provide closed form expressions for the
limiting covariance matrices of the local Whittle estimators.

The rest of the paper is organized as follows. Our asymptotic normality results are presented in
Section 2, and optimization issues are discussed in Section 3. We present a small numerical study
to assess the validity and relevance of the derived asymptotic results and suggested test statistics
in Section 4. We discuss local Whittle plots in Section 5, and consider real data applications in
Section 6. Section 7 contains conclusions, including some open questions. All technical proofs are
moved to Appendices A, B and C.
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2 Asymptotic normality results

As noted in Section 1, Robinson (2008) derived the asymptotic normality of the local Whittle
estimators φ̂, d̂1, d̂2. Here, we are interested in all the model parameters in either Parametrization
P or Parametrization C, and the asymptotic normality of their local Whittle estimators.

We also consider separately the case of fractional cointegration. We should also mention that
though all our results are stated in the form of asymptotic normality, their proofs focus only on the
calculation of the respective information matrices. The asymptotic normality itself is somewhat
“standard” and could be established as in Robinson (2008). To distinguish between the information
and limiting covariance matrices of the two Parametrizations we use the subscripts p (Theorems
2.1 and 2.2) and c (Theorems 2.3 and 2.4) .

2.1 Case of Parametrization P without fractional cointegration

As in Robinson (2008), we shall make the following assumptions. For a matrix function A(λ), the
notation A(λ) = O(λp) is interpreted as the standard O(λp) notation but entry-wise.

(C1) The spectral density fX(λ) of a bivariate stationary series {Xn} satisfies (1.2). Furthermore,
for some b ∈ (0, 2], ΦD,φ(λ)C(λ) − P = O(λb), as λ → 0+, where P is a real 2 × 2 matrix
satisfying PP ′ = Ω, and C(λ) is a 2×2 matrix-valued function differentiable in a neighborhood
of λ = 0 such that fX(λ) = C(λ)C(λ)′ and ΦD,φ(λ)dC(λ)/dλ = O(λ−1), as λ→ 0+.

(C2) The series {Xn}n∈Z admits a representation Xn = EXn +
∑

j∈ZCjεn−j ,
∑

j∈Z ‖Cj‖2 < ∞
with the Euclidean norm ‖ · ‖, where Cj = (2π)−1

∫ π
−π C(λ)e−ijλdλ and {εn}n∈Z is a p × 1

vector series such that εn has almost sure constant first, second, third and fourth moments
and respective cross-moments conditionally on Fn−1 = σ{εm,m ≤ n − 1} and such that
Eεn = 0, Eεnε′n = Ip, Eεnεm = 0, n 6= m. Moreover, P(ε′nεn > η) ≤ KP(X > η) for all η > 0
and some scalar non-negative random variable X such that EX <∞.

(C3) Let θ = (ω11, ω22, ω12, φ, d1, d2)′ be the parameter vector of interest and such that θ ∈ Θω ×
Θφ × ΘD, where Θω = {(x, y, z) ∈ R+ × R+ × R : xy − z2 > 0}, Θφ = (−π/2, π/2),
ΘD = (−1/2, 1/2)2.

(C4) The number of frequencies m satisfies (logm)2m1+2b/N2b → 0 and (logN)C/m → 0 as
N →∞ for any C <∞, where b ∈ (0, 2] appears in (C1).

(C5) 0 < |ω12|/(ω11ω22)1/2 < 1.

The assumptions (C1)–(C5) are, respectively, the assumptions (B1), (B2), (B4), (B5) and (A6)
of Robinson (2008) with (C3) also restricting Ω to be positive definite. Note that Assumption (C5)
excludes the fractal non-connectivity case ω12 = 0 (cf. (1.5)) and the fractionally cointegrated case
ω11ω22−ω2

12 = 0 (cf. (1.12)). The next theorem is the asymptotic normality result for all bivariate
local Whittle estimators. It is followed by a discussion and a number of remarks that cast further
light on the form of the asymptotic covariance matrix. The proof can be found in Appendix A.
(As throughout the paper, the notation log below refers to the natural logarithm.)
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Theorem 2.1 Suppose that the assumptions (C1)–(C5) hold. Then, as N →∞,

√
mη̂p :=

√
m



1
log(N/m)(ω̂11 − ω11)

1
log(N/m)(ω̂22 − ω22)

1
log(N/m)(ω̂12 − ω12)

φ̂− φ
d̂1 − d1

d̂2 − d2


d→ N (0,Γp), (2.1)

where the symmetric limiting covariance matrix Γp (presented in compact form) is

Γp =



ω11(ω11ω22+|Ω|)
2ω22

ω2
12
2

ω11ω12
2 0 −ω11ω22+|Ω|

4ω22
− ω2

12
4ω22

ω22(ω11ω22+|Ω|)
2ω11

ω12ω22
2 0 − ω2

12
4ω11

−ω11ω22+|Ω|
4ω11

ω2
12
2 0 −ω12

4 −ω12
4

|Ω|
2ω2

12
0 0

ω11ω22+|Ω|
8ω11ω22

ω2
12

8ω11ω22

ω11ω22+|Ω|
8ω11ω22


, (2.2)

with |Ω| = ω11ω22 − ω2
12.

It is instructive to comment first on how the different convergence rates
√
m and

√
m/ log(N/m)

in (2.1) actually arise, as some of these arguments will take a more central place in the following
sections. The information matrix associated with the estimated model parameters (at the rate√
m) is given in (A.5) of Appendix A in its asymptotic form as:

ω2
22
|Ω|2

ω2
12
|Ω|2 −2ω12ω22

|Ω|2 0 −2ω22
|Ω| L 0

ω2
11
|Ω|2 −2ω11ω12

|Ω|2 0 0 −2ω11
|Ω| L

2(ω11ω22+ω2
12)

|Ω|2 0 2ω12
|Ω| L

2ω12
|Ω| L

2ω2
12
|Ω| 0 0

2(2ω11ω22−ω2
12)

|Ω| M −2ω2
12
|Ω| M

2(2ω11ω22−ω2
12)

|Ω| M


. (2.3)

where L and M are given by

L =
1

m

m∑
j=1

log λj , M =
1

m

m∑
j=1

(log λj)
2 (2.4)

and λj = 2πj/N are the Fourier frequencies. It is known (see Appendix A) that

L ∼ log(m/N), M ∼ (log(m/N))2. (2.5)

Somewhat surprisingly perhaps, one can check that substituting the latter asymptotic expressions
for L and M in (2.3) (or substituting M by L2 in (2.3)) actually yields a singular information
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matrix. A way to overcome this is to compute the inverse of (2.3) by treating L and M as distinct.
More specifically, by using a symbolic matrix inversion in Mathematica of Wolfram Research (2017),
the inverse of (2.3) is



ω11(2ω11ω22M−ω2
12L

2)
2ω22(M−L2)

ω2
12(2M−L2)
2(M−L2)

ω11ω12(2M−L2)
2(M−L2) 0 (ω11ω22+|Ω|)L

4ω22(M−L2)
ω2

12L
4ω22(M−L2)

ω22(2ω11ω22M−ω2
12L

2)
2ω11(M−L2)

ω12ω22(2M−L2)
2(M−L2) 0

ω2
12L

4ω11(M−L2)
(ω11ω22+|Ω|)L
4ω11(M−L2)

ω22

2 +
ω2

12M
2ω11(M−L2) 0 ω12L

4(M−L2)
ω12L

4(M−L2)

|Ω|
2ω2

12
0 0

ω11ω22+|Ω|
8ω11ω22(M−L2)

ω2
12

8ω11ω22(M−L2)

ω11ω22+|Ω|
8ω11ω22(M−L2)


.

(2.6)
One can show (Appendix A) that

M − L2 = 1 + o(1). (2.7)

The relations (2.5), (2.6) and (2.7) then imply the different convergence rates in (2.1) and the form
of the limiting covariance matrix in (2.2). For example, the asymptotic covariance between ω̂11 and
d̂1 is calculated from the negative (1,5)th entry of (2.6). It is given by −(ω11ω22 + |Ω|)/4ω22 with
additional factor 1/ log(N/m) due to L, since M − L2 ∼ 1 by (2.7).

But we also note that (2.6) is more informative than (2.2). For example, one could check from
(2.2) by using the delta method that the asymptotic variance of ω̂2

12/(ω̂11ω̂22) is zero at the rate√
m/ log(N/m). But using (2.6), the asymptotic variance would be nonzero at the faster rate

√
m.

Remark 2.1 Note that the limiting covariance matrix Γp in (2.2) depends only on ω11, ω12, ω22.

Moreover, the phase parameter estimator φ̂ is asymptotically uncorrelated with respect to other
estimators. The asymptotic variance of the (normalized) memory parameter estimators d̂1, d̂2 is

1

4
− ω2

12

8ω11ω22
. (2.8)

When ω12 = 0 (or close to 0, since strictly speaking ω12 = 0 is not permitted under Assumption
(C5)), the quantity (2.8) becomes 1/4, that is, the usual asymptotic variance of the (normalized)
memory estimator in the univariate case. By this analogy, the asymptotic variance of the estimator
ω̂11 in the univariate case is ω2

11, after substituting ω12 = 0 in the (1,1) entry of Γp. By (2.8), the
largest reduction in the variance 1/4 that can be achieved from another dependent long-memory
series is arbitrarily close to 1/8.

Remark 2.2 The presence of the multiplicative factor log(N/m) in the estimation of ω11, ω22, ω12

is expected in view of the analogous results when using the so-called GPH estimation. For example,
a similar factor logN appears in the GPH estimation of ω11 and ω12 in Robinson (1995), Theorem
3. In fact, it seems that logN should actually be log(N/m) in Robinson (1995) as well. A mistake
in Robinson (1995) appears, for example, in relation (5.2) which for J = 1 yields:

m∑
k=l+1

(−2 log λk) = 2m(logN + 1) +O(l logN), (2.9)
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where, in particular, m/N → 0 and l/m→ 0. Indeed, by Stirling’s formula,
∑m

k=1 log k = n log n−
n+ (1/2) log n+O(1), as n→∞. Hence,

m∑
k=l+1

(−2 log λk) = −2

m∑
k=1

log k + 2

l∑
k=1

log k + 2(m− l) log
N

2π

= 2m log
N

2πm
+ 2m− 1

2
logm+O(1)− 2l log

N

2πl
+ 2l − 1

2
log l +O(1)

= 2m

(
log

N

2πm
+ 1

)
+O

(
l log

N

l

)
, (2.10)

where we also used the assumption (logm)/l → 0 (which follows from Assumption 6 in Robinson
(1995)). Note that (2.10) does not imply (2.9): while O(l logN/l) is obviously also O(l logN), the
same is not expected, for example, for m logm (arising from the difference of (2.10) and (2.9)),
since (m logm)/(l logN)→∞ for m = Na and arbitrary power a > 0.

Remark 2.3 The asymptotic covariance matrix of (φ̂, d̂1, d̂2)′ appearing in Theorem 4 of Robinson
(2008) (see also Remark 5) is denoted as Σ−1 with Σ = (σjk)j,k=2,3,4 and σjk specified before the
theorem. In particular, it is stated that

σ33 = σ44 = 4− 2µρ2 = 4− 2ρ

1− ρ2
=

4ω11ω22 − 6ω2
12

ω11ω22 − ω2
12

, (2.11)

where µ = (1− ρ2)−1 and ρ = ω12/(ω11ω22)1/2. In fact, these entries of Σ should be1

σ33 = σ44 =
4ω11ω22 − 2ω2

12

ω11ω22 − ω2
12

= 2(µ+ 1) (2.12)

and (correcting the entries σ33 and σ44) the matrices Σ and Σ−1 should read

Σ−1 =

2(µ− 1) 0 0
0 2(µ+ 1) 2(µ− 1)
0 2(µ− 1) 2(µ+ 1)

−1

=


1

2(µ−1) 0 0

0 (µ+1)
8µ

(µ−1)
8µ

0 (µ−1)
8µ

(µ+1)
8µ

 . (2.13)

One can check that (2.13) is the same as the matrix consisting of the last three columns and the
last three rows of Γp in (2.2).

2.2 Case of Parametrization P with fractional cointegration

We now turn to the model (1.10) allowing for fractional cointegration when β 6= 0. The model
parameters ω11, ω22, ω12, φ, d1, d2 and their local Whittle estimators below refer to (1.10), and not
(1.1) as in the previous section (see also Remark 2.4 below).

Theorem 2.2 Suppose that the assumptions (C1)–(C5) hold. In addition, suppose that 0 ≤ d1 <
d2 < 1/2. Then, as N →∞,

√
m

(
λ
−(d2−d1)
m (β̂ − β)

η̂p

)
d→ N (0,Υp), (2.14)

1As defined in Robinson (2008), the matrix Σ is generally not positively definite. Non-positive definiteness happens
when (4 − 2ρ/(1 − ρ)2)2 − (2ρ2/(1 − ρ2))2 = 4(3ρ− 2)(ρ+ 1)(ρ+ 2)(ρ− 1)/(1 − ρ2)2 < 0 or 3ρ− 2 > 0 or ρ > 2/3.
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where the vector η̂p is defined in (2.1), and by using the corresponding parameters to subscript the
entries of Υp, the diagonal entries of Υp are given by

Υβ = −ω11|Ω|(ν0 − 1)4(2ν0 − 1)

2ω22ν2
0K1

,
Υω11

ω2
11

=
Υω22

ω2
22

=
K1 + |Ω|(ν0 − 1)2

2K1
,

Υω12 =
ω2

12

2
, Υφ =

|Ω|
2ω2

12

, Υd1 = Υd2 =
K1 + |Ω|(ν0 − 1)2

8K1
,

and the off-diagonal entries of Υp are given by

2ν0K1

|Ω|(ν0 − 1)2(2ν0 − 1) cosφ
(Υβω11 ,Υβω22 ,Υβω12 ,Υβφ,Υβd1 ,Υβd2)

=

(
ω11ω12

ω22
,−ω12,−

ω11(ν0 − 1)

ν0
,
ω11(ν0 − 1)

ω12
,
ω12

2ω22
,− ω12

2ω22

)
,

4K1

|Ω|(ν0 − 1)(2ν0 − 1) sin2 φ
(Υφω11 ,Υφω22 ,Υφω12 ,Υφd1 ,Υφd2)

=

(
−ω11, ω22,

ω11ω22(ν0 − 1)

ω12ν2
0

,− 1

2ν0
,

1

2ν0

)
,

(Υω12ω11 ,Υω12ω22 ,Υω12d1 ,Υω12d2) =
(ω11ω12

2
,
ω12ω22

2
,
ω12

4
,
ω12

4

)
,

(Υω11ω22 ,Υω11d1 ,Υω11d2) =

(
ω11ω22K2

2K1
,
ω11(K1 + |Ω|(ν0 − 1)2)

4K1
,
ω11K2

4K1 − 1

)
,

(Υω22d1 ,Υω22d2) =

(
ω22K2

4K1
,
ω22(K1 + |Ω|(ν0 − 1)2)

4K1

)
, Υd1d2 =

K2

4K1

with ν0 = d2 − d1 and

K1 = ω11ω22(ν0 − 1)2 + (2ν0 − 1)ω2
12 sin2 φ, K2 = ω2

11ν
2
0 − (2ν0 − 1)ω2

11 sin2 φ.

Remark 2.4 Though the same parameters ω11, ω22, ω12, φ, d1, d2 are used in the case of fractional
cointegration, we stress again that these parameter appear in the model (1.10) with transformed
spectral density fX(λ). When β 6= 0 (and d1 < d2), the spectral density fX(λ) itself satisfies the
asymptotic relation

fX(λ) ∼ ω22λ
−2d2

(
β2 β
β 1

)
, as λ→ 0+. (2.15)

Thus, for the original series X, the long-memory and other model parameters satisfy (1.12). We
also note for later reference that the phase parameter for the model (2.15) is always φ = 0.

Remark 2.5 As in the discussion following Theorem 2.1, we note that the information matrix for
the fractionally cointegrated model is computed in Appendix A and has the same entries as the
information matrix for the non-cointegrated model for all the parameters except β (see (A.9) for
the entries related to β). The inverse of the information matrix in the form (2.6) could also be
computed but it will not be included here for the shortness sake.
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2.3 Case of Parametrization C without fractional cointegration

The next result presents the asymptotic normality of the parameter estimators in Parametrization
C in (1.4). Note that the different parameters (and their estimators) in Parametrizations P and C
are related through r1 − ir2 = ω12e

−iφ and, for r1 6= 0,

φ = arctan

(
r2

r1

)
, ω12 = sign(r1)

√
r2

1 + r2
2. (2.16)

In principle, the asymptotic normality result in Parametrization C follows from Theorem 2.1
through the delta method, at least when r1 6= 0. But it will be easier to derive the result di-
rectly, and in contrast to Theorem 2.1, allowing r1 = 0 or/and r2 = 0. We will also state the result
using the asymptotic covariance matrix in the form (2.6) given in the discussion following Theorem
2.1 for Parametrization P that will prove useful in connection to fractal connectivity. As already
noted at the end of that discussion, the asymptotic covariance form (2.6) carries more information
than the form (2.2), and this will also be the case with the form (2.19) given below. To use the
latter form, we shall need the notation

ζN
d∼ N (0,ΨN ), as N →∞, (2.17)

with a random vector ζN and a covariance matrix ΨN , to mean that diag(ΨN )−1/2ζN
d→ N (0,Ψ)

for some covariance matrix Ψ. The relation (2.17) thus expresses the idea that ζN is asymptotically
normal with mean 0 and covariance ΨN . One thinks here of ΨN having entries that diverge to
infinity. The appearance of diag(ΨN )1/2 in the above interpretation should then not be surprising
since this normalization is also expected to be that for the cross covariances in ΨN .

We need to modify some of the assumptions stated in Section 2 as well:

(C1)′ The spectral density fX(λ) of a bivariate stationary series {Xn} satisfies (1.1). Furthermore,
for some b ∈ (0, 2], λDC(λ) − Q = O(λb), as λ → 0+, where Q is a complex-valued 2 × 2

matrix satisfying QQ
′

= G, and C(λ) is a 2 × 2 matrix-valued function differentiable in a
neighborhood of λ = 0 such that fX(λ) = C(λ)C(λ)′ and ΦD,φ(λ)dC(λ)/dλ = O(λ−1), as
λ→ 0+.

(C3)′ Let θ = (ω11, ω22, r1, r2, d1, d2)′ be the parameter vector of interest and such that θ ∈ Θωr ×
ΘD, where Θωr = {(x, y, z, w) ∈ R+×R+×R×R : xy− (z2 +w2) > 0}, ΘD = (−1/2, 1/2)2.

Theorem 2.3 Suppose that the assumptions (C1)′, (C2), (C3)′ and (C4) hold. Then, as N →∞,

√
mη̂c :=

√
m



ω̂11 − ω11

ω̂22 − ω22

r̂1 − r1

r̂2 − r2

d̂1 − d1

d̂2 − d2


d∼ N (0,Ψc,N ), (2.18)
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where
d∼ is defined following (2.17) and Ψc,N is

ω11(2ω11ω22M−(r21+r22)L2)

2ω22(M−L2)

(r21+r22)(2M−L2)

2(M−L2)

ω11r1(2M−L2)

2(M−L2)

ω11r2(2M−L2)

2(M−L2)

(ω11ω22+|G|)L
4ω22(M−L2)

(r21+r22)L

4ω22(M−L2)

ω22(2ω11ω22M−(r21+r22)L2)

2ω11(M−L2)

ω22r1(2M−L2)

2(M−L2)

ω22r2(2M−L2)

2(M−L2)

(r21+r22)L

4ω11(M−L2)

(ω11ω22+|G|)L
4ω11(M−L2)

|G|
2

+
r21(2M−L2)

2(M−L2)

r1r2(2M−L2)

2(M−L2)

r1L

4(M−L2)

r1L

4(M−L2)

|G|
2

+
r22(2M−L2)

2(M−L2)

r2L

4(M−L2)

r2L

4(M−L2)

ω11ω22+|G|
8ω11ω22(M−L2)

r21+r22
8ω11ω22(M−L2)

ω11ω22+|G|
8ω11ω22(M−L2)


(2.19)

with L and M defined in (2.4), and satisfying (2.5) and (2.7).

Focus now on the estimators r̂1 and r̂2 that are of particular interest in connection to fractal
(non-)connectivity (cf. (1.6)). Note that by (2.18) and (2.19),

√
m

(
r̂1 − r1

r̂2 − r2

)
d∼ N (0,Ψr,N ) with Ψr,N =

 |G|2 +
r21(2M−L2)
2(M−L2)

r1r2(2M−L2)
2(M−L2)

r1r2(2M−L2)
2(M−L2)

|G|
2 +

r22(2M−L2)
2(M−L2)

 . (2.20)

That is, by using the relations (2.5) and (2.7) for M , L,

√
m

(
r̂1−r1

1{r1=0}+(logN/m)1{r1 6=0}
r̂2−r2

1{r2=0}+(logN/m)1{r2 6=0}

)
d→ N (0,Ψr1,r2) (2.21)

with

Ψr1,r2 =

(
|G|
2 1{r1=0} +

r21
2 1{r1 6=0}

r1r2
2

r1r2
2

|G|
2 1{r2=0} +

r22
2 1{r2 6=0}

)
.

Indeed, for example, when r1 6= 0 and r2 6= 0, note from (2.5) and (2.7) that Ψr,N behaves as

Ψr,N ∼

(
r21
2 (logN/m)2 r1r2

2 (logN/m)2

r1r2
2 (logN/m)2 r22

2 (logN/m)2

)
,

which yields (2.21). Note that Ψr1,r2 is singular when r1 6= 0, r2 6= 0. This is expected in view of the

asymptotic normality result for the estimators ω̂12, φ̂ in Parametrization P, where the convergence
rate for ω̂12 is

√
m/ log(N/m) but that for φ̂ is the faster rate

√
m.

The asymptotic relation (2.21) provides a means for testing the fractal non-connectivity hy-
pothesis

H0 : r1 = r2 = 0 against H1 : not H0, (2.22)

(cf. (1.6)). Setting a test statistic as

ξ̂N =
2m

|Ĝ|
(r̂2

1 + r̂2
2) =

2m

ω̂11ω̂22
(r̂2

1 + r̂2
2), (2.23)

we have by (2.21) that

ξ̂N
d→ χ2(2) (2.24)

under H0, where χ2(k) denotes the chi-square distribution with k degrees of freedom, and also

ξ̂N
p→ +∞ under the alternative H1. Testing for H0 can then be carried out in a standard way by

comparing ξ̂N to an appropriate critical value associated with the χ2(2) distribution. Some related
local Whittle plots are discussed in Section 5.
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Remark 2.6 We note that under the hypothesis H0 in (2.22),

φ̂ = arctan

(
r̂2

r̂1

)
= arctan

(√
mr̂2√
mr̂1

)
d→ arctan

(
X2

X1

)
=: U0

d
= U

(
−π

2
,
π

2

)
, (2.25)

where X1, X2 are independent N (0, 1) random variables and U(−π/2, π/2) refers to a uniform
distribution on (−π/2, π/2). The relations (2.23) and (2.25) clarify what happens with the local
Whittle estimators ω̂2

12 = r̂2
1 + r̂2

2 and φ̂ in the case r1 = r2 = 0.

Remark 2.7 We also note here that it seems to be impossible to derive any inference procedures
that would accommodate both the hypothesis H0 in (2.22) and its alternative H1. More specifically,
note from Theorem 2.1 that a confidence interval for ω2

12 = r2
1 + r2

2 (or ω12 could also be considered
similarly) is

ω̂2
12 ± z1−α

√
2 log(N/m)ω̂2

12√
m

, (2.26)

where z1−α is an appropriate critical value for the standard normal distribution. Since
z1−α

√
2 log(N/m)/

√
m, is expected to be smaller than 1 for most m’s of interest, the confidence

interval (2.26) will never contain ω2
12 = r2

1 + r2
2 = 0. That is, one could not expect a confidence

interval for ω2
12 assuming ω12 6= 0 to be valid for r2

1 + r2
2 assuming r1 = r2 = 0.

2.4 Case of Parametrization C and fractional cointegration

In the following result, we also provide the asymptotic normality result in the case of fractional
cointegration but assuming that the right-hand side of (1.10) is parametrized by (1.4).

Theorem 2.4 Suppose that the assumptions (C1)′, (C2) and (C3)′ hold. In addition, suppose that
0 ≤ d1 < d2 < 1/2. Then, as N →∞,

√
m

(
λ
−(d2−d1)
m (β̂ − β)

η̂c

)
d→ N (0,Υc), (2.27)

where the vector η̂c is defined in (2.18) and Υc coincides with Υp in Theorem 2.2 after the trans-
formations in (2.16), except the following entries:

Υβr1 = −ω11|G|(ν0 − 1)4(2ν0 − 1)

2ω22ν2
0K1

, Υβr2 = 0,

Υω11r1 = −ω11r1

2
, Υω11r2 = −ω11r2

2
, Υω22r1 =

ω22r1

2
, Υω22r2 =

ω22r2

2
,

Υr1 =
r2

1

2
, Υr1r2 =

r1r2

2
, Υr1,d1 = Υr1,d2 =

r1

4
, Υr2 =

r2
2

2
, Υr2,d1 = Υr2,d2 =

r2

4
.

As stated, Theorem 2.4 is not suitable for making inference about the fractal non-connectivity
r1 = r2 = 0. Indeed, note that the variances of r̂1 and r̂2 are zero in the theorem under this
assumption. To accommodate the case r1 = r2 = 0, we would need to restate Theorem 2.4 in
the form of Theorem 2.3. We shall not do so for the shortness sake. But we shall indicate the
corresponding result for r̂1 and r̂2. More specifically, we have

√
m

 r̂1−r1
1{r1=0}+(logN/m)1{r1 6=0}

r̂2−r2
1{r2=0}+(logN/m)1{r2 6=0}

 d→ N (0, Ψ̃r1,r2) (2.28)
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with

Ψ̃r1,r2 =

( |G|(ν0−1)2

2ν20
1{r1=0} +

r21
2 1{r1 6=0}

r1r2
2

r1r2
2

|G|
2 1{r2=0} +

r22
2 1{r2 6=0}

)
.

Then, we can perform a test for fractal non-connectivity based on

ξ̂fc,N =
2m

|Ĝ|

(
ν̂0

2

(ν̂0 − 1)2
r̂2

1 + r̂2
2

)
d→ χ2(2) (2.29)

under H0.

3 Reduction of optimization problems

We discuss here several reductions of the optimization problems for the local Whittle estimation.
It is a standard exercise to show that the optimization problem (1.7) can be reduced to that over
φ,D only as (

φ̂, D̂
)

= argmin
(φ,D)

R(φ,D) (3.1)

with

R(φ,D) = log
∣∣Ω̂(D,φ)

∣∣− 2(d1 + d2)
1

m

m∑
j=1

log λj , (3.2)

where

Ω̂(φ,D) = <
( 1

m

m∑
j=1

ΦD,φ(λj)IX(λj)ΦD,φ(λj)
)

(3.3)

with < denoting the real part (entry-wise). Moreover, Ω̂ in (1.7) is equal to Ω̂(φ̂, D̂). For example,
this reduction was used by Robinson (2008), and seems to be one reason why the asymptotics only
for φ̂ and D̂ were established.

It is perhaps less known but the optimization (3.1) can be reduced even further. Indeed, we
show in Appendix C that the optimization (1.8) can be reduced to that over D only and that φ̂
can be expressed in terms of the estimated D̂. More specifically, we have

D̂ = argmin
D

R(φ̂e(D), D), (3.4)

where

φ̂e(D) = − arctan

(∑m
j=1 λ

d1+d2
j =(IX,12(λj))∑m

j=1 λ
d1+d2
j <(IX,12(λj))

)
(3.5)

and IX,12(λj) is the (1,2) entry of the periodogram IX(λj) in (1.9). Moreover φ̂ = φ̂e(D̂). It is
interesting to note that a preliminary estimator of φ given in Remark 3 of Robinson (2008), namely,

φ̂init = − arctan

(∑m
j=1=(IX,12(λj))∑m
j=1<(IX,12(λj))

)
, (3.6)

is the local Whittle estimator (3.5) with d1 = d2 = 0.
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Turning to the case of fractional cointegration, similar calculations give the explicit form of the
phase parameter estimator as

φ̂e(D,β) = − arctan

(∑m
j=1 λ

d1+d2
j {=(IX,12(λj))− βIX,22(λj)}∑m

j=1 λ
d1+d2
j {<(IX,12(λj))− βIX,22(λj)}

)
, (3.7)

in terms of the other model parameters. We omit details for the shortness sake.
Finally, there is another natural way to understand the reduced optimization problem (3.4) with

the expressions (3.2) and (3.5) for other model parameters. Note that the reduced optimization
problem (3.1) was obtained from (1.7) by eliminating the real-valued matrix Ω; in particular, the
fact that (3.3) has real entries is ensured by taking the real part <. One could expect that a similar
reduction could also take place in eliminating not the real-valued matrix Ω but a complex-valued
matrix G in (1.1), comprised of both Ω and φ. Indeed, we show in Appendix C that the optimization
problem (3.4)–(3.5) is equivalent to

D̂ = argmin
D

{
log |Ĝ(D)| − 2(d1 + d2)

1

m

m∑
j=1

log λj

}
, (3.8)

where

Ĝ(D) =
1

m

m∑
j=1

λDj IX(λj)λ
D
j . (3.9)

Moreover, letting Ĝ = (ĝjk) be defined from φ̂, Ω̂ in (1.7) as in the relations preceding (1.2) (that is,

ĝ11 = ω̂11, ĝ22 = ω̂22, etc.), we have Ĝ = Ĝ(D̂). That is, in deriving the local Whittle estimators,
one may as well work with the specification (1.1), involving the complex-valued matrix G. These
observations also suggest that the finding (3.5) should not be surprising, since φ̂ can be expressed
in terms of Ĝ(D̂). In the case of fractional cointegration, the same relationship (3.8) holds for
optimizing over D and B with Ĝ(D) = 1

m

∑m
j=1 λ

D
j BIX(λj)B

′λDj .

4 Simulation study

In this section, we present a small simulation study examining our asymptotic results. We focus on
the situations that highlight our contributions: estimation of the additional parameters ω11, ω22, ω12

and dealing with fractal (non-)connectivity. But first we define the processes used in the simulations.

4.1 Data generating processes

We consider the following data generating processes (DGPs) in the simulations discussed in Section
4.2 below and also in Section 5.

• (DGP1) Two-sided VARFIMA(0, D, 0) model: This model, introduced in Kechagias and
Pipiras (2017), is defined as

Xn = ∆c,D(B)−1ηn, n ∈ Z, (4.1)

where {ηn}n∈Z is a Gaussian white noise series with Eηnη′n = Ση, B is the backward shift
operator and

∆c,D(B) = (1−B)−D + (I −B−1)−D
(
c 0
0 −c

)
(4.2)
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with c ∈ (−1, 1) and D = diag(d1, d2). As shown in Kechagias and Pipiras (2017), there is
a one-to-one correspondence between c ∈ (−1, 1) and the phase parameter φc ∈ (−π/2, π/2),
given by the relationship

φc = −arctan

(
a1

c−1
c+1 + a2

1+c
1−c

1 + a1a2

)
, aj = tan

(
πdj
2

)
.

The autocovariance function of the series is known in closed form, and the series can be
generated exactly as in e.g. Helgason, Pipiras and Abry (2011). When c = 0, the two-sided
VARFIMA(0, D, 0) model becomes the one-sided VARFIMA(0, D, 0) model commonly used
in the literature on multivariate long memory.

• (DGP2) Fractally non-connected model: This is a model with the spectral density

fX(λ) =

(
σ2
11

2π |1− e
−iλ|−2d1 σ12

2π (1− e−iλ)−δ1(1− eiλ)−δ2

σ12
2π (1− e−iλ)−δ2(1− eiλ)−δ1

σ2
22

2π |1− e
−iλ|−2d2

)
, (4.3)

where 0 < δj < dj < 1/2, j = 1, 2. It is fractally non-connected since δj < dj . Note also
that, since the entries of the matrix (4.3) are those of the spectral density of a one-sided
VARFIMA(0, D̃, 0) series (with d̃ = d or δ), the autocovariance function of the series can
be computed explicitly and the Gaussian series can be generated exactly following Helgason
et al. (2011).

• (DGP3) Fractionally cointegrated two-sided VARFIMA(0, D, 0) model: The spectral density
fX(λ) of this model is such that BfX(λ)B′ coincides with the spectral density of the two-
sided VARFIMA(0, D, 0) model, where B is defined in (1.11) and involves a cointegration
parameter β. Note that this is equivalent to the spectral density of the series BX being
that of the two-sided VARFIMA(0, D, 0) series Y , that is, BX = Y or X = B−1Y with
B−1 = (1 β; 0 1). For the underlying two-sided VARFIMA(0, D, 0) model, we take DGP1.

• (DGP4) Fractionally cointegrated fractally non-connected model: This model is defined in
the same way as DGP3 but based on the fractally non-connected model DGP2 rather than
the two-sided VARFIMA(0, D, 0) model DGP1.

Unless specified otherwise, the parameters used for each DGP are the following. DGP1 uses

d1 = 0.2, d2 = 0.4, φc = 1.158 (c = 0.6), Ω =

(
0.371 0.097
0.097 0.157

)
, Ση =

(
1 0.4

0.4 1

)
,

and DPG3 is generated from DGP1 by taking the cointegration parameter β = 1. For the fractally
non-connected model DGP2, we take

d1 = 0.3, d2 = 0.4, δ1 = 0.1, δ2 = 0.1, σ11 = σ22 = 1, σ12 = 0.2.

DGP4 is defined by fractionally cointegrating DGP2 with the cointegration parameter β = 1.

4.2 Simulation results

We use the following measures to evaluate the performance of the local Whittle estimators:
the bias, the mean-squared error (MSE), the difference between the empirical variance and
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Parameters Measures ×102
Number of frequencies m

N .5 N .55 N .6 N .65 N .7 N .75 N .8

ω11

Bias 5.46 2.87 2.06 1.62 1.75 2.27 2.54
MSE 5.41 2.56 1.38 0.64 0.33 0.20 0.14

Var Diff 1 0.83 0.18 0.21 0.04 0.00 0.00 -0.01
Var Diff 2 0.11 -0.43 -0.24 -0.24 -0.17 -0.09 -0.04

ω12

Bias -2.39 -1.91 -1.76 -1.70 -1.56 -1.78 -2.04
MSE 0.82 0.45 0.29 0.18 0.10 0.09 0.06

Var Diff 1 0.53 0.29 0.19 0.11 0.05 0.04 0.01
Var Diff 2 0.59 0.33 0.21 0.13 0.06 0.05 0.01

ω22

Bias 0.33 -1.50 -2.66 -3.55 -4.37 -5.32 -6.42
MSE 1.13 0.40 0.21 0.19 0.22 0.29 0.42

Var Diff 1 0.60 0.12 0.02 0.01 0.00 0.00 0.00
Var Diff 2 0.51 0.05 -0.03 -0.02 -0.01 -0.01 0.00

φ

Bias -1.67 -1.69 -2.16 -3.65 -5.17 -7.37 -11.32
MSE 11.56 7.34 4.48 3.17 2.42 2.11 2.38

Var Diff 1 3.79 1.65 0.33 0.06 0.07 0.09 0.05
Var Diff 2 3.79 1.65 0.33 0.06 0.07 0.09 0.05

d1

Bias -0.38 -0.36 -0.50 -0.59 -0.80 -1.19 -1.45
MSE 1.03 0.68 0.47 0.33 0.23 0.17 0.13

Var Diff 1 -0.02 -0.01 0.01 0.02 0.01 0.01 0.00
Var Diff 2 0.29 0.16 0.10 0.07 0.04 0.03 0.01

d2

Bias 1.98 2.42 3.22 4.38 5.80 8.08 11.78
MSE 1.30 0.83 0.58 0.53 0.56 0.80 1.49

Var Diff 1 0.21 0.08 0.02 0.03 0.01 0.00 0.01
Var Diff 2 0.52 0.25 0.11 0.08 0.04 0.02 0.01

Table 1: Measures of interest ×102 for DGP1 and its parameters. Var Diff 1 is the difference
between the empirical variance and the variance determined by the information matrix (2.3), Var
Diff 2 is the difference between the empirical variance and the asymptotic variance in Theorem 2.1.

the variance determined by the information matrix (2.3) (Var Diff 1), and the difference be-
tween the empirical variance and the asymptotic variance determined by Γp in Theorem 2.1
(Var Diff 2). All results are based on 500 replications. The sample size is N = 1, 000, and
m = N .5, N .55, N .6, N .65, N .7, N .75, N .8 are used in the local Whittle estimation.

Table 1 shows the performance measures for DGP1. Note that all parameters are inferred
reasonably well in terms of the bias and the variance differences. Note, however, that the bias and
MSE for the phase parameter are calculated by considering a modification of the phase parameter
estimator discussed in Section 5.2 below.

For the fractionally cointegrated model DGP2, the results are reported in Table 2. They are
worse than those for the non-cointegrated model DGP1. First, the cointegration parameter β
estimates show large bias when the number of frequencies m is small, and larger m is needed to get
the smallest MSE. The asymptotic variance is calculated based on the information matrix (2.14)
which depends on the phase parameter. We used the modification of Section 5.2 to estimate the
phase parameter correctly. Second, Table 2 shows much larger MSEs when m = N .5. This is
due to very unstable estimates of the cointegration parameter β, affecting other parameters as
well. However, as m increases, MSEs tend to decrease. This indicates that cointegration makes
estimation worse, and requires a larger number of frequencies for better performance, and hence
also a larger sample.

We also report in Table 3 the size and power of the tests for fractal non-connectivity proposed
in Sections 2.3 and 2.4. For the size of the test based on ξN in (2.24), DGP2 is considered. It
is observed that the size depends on the number of frequencies. Either m = N .5 or N .55 seems
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Parameters Measures ×102
Number of frequencies m

N .5 N .55 N .6 N .65 N .7 N .75 N .8

β

Bias -1.32 -3.34 -6.29 -6.79 -7.21 -7.70 -9.08
MSE 324.02 219.78 97.96 19.50 12.34 7.39 5.06

Var Diff 1 317.88 212.51 90.62 13.81 8.06 4.27 2.82
Var Diff 2 314.05 210.32 90.59 13.71 7.88 4.20 2.82

ω11

Bias 116.56 61.59 29.75 7.95 5.41 4.38 4.29
MSE 2250.05 829.11 302.76 2.56 1.32 0.52 0.33

Var Diff 1 2105.02 786.90 292.03 1.04 0.63 0.13 0.05
Var Diff 2 2103.01 785.96 291.56 0.80 0.47 0.06 0.03

ω12

Bias -4.55 -4.34 -3.06 -2.86 -2.11 -1.64 -1.49
MSE 35.12 13.74 6.23 1.17 0.64 0.29 0.11

Var Diff 1 34.30 13.20 5.95 1.00 0.54 0.23 0.08
Var Diff 2 34.52 13.37 6.06 1.06 0.58 0.25 0.09

ω22

Bias 0.27 -1.16 -2.51 -3.42 -4.28 -5.27 -6.35
MSE 0.97 0.41 0.21 0.18 0.21 0.29 0.41

Var Diff 1 0.48 0.13 0.01 0.00 0.00 0.00 0.00
Var Diff 2 0.26 0.07 0.00 0.00 0.00 0.00 0.00

φ

Bias -106.43 -104.04 -86.90 -72.88 -53.59 -37.44 -27.63
MSE 181.42 185.81 161.43 140.05 102.78 60.80 27.46

Var Diff 1 51.48 60.53 71.95 74.41 65.18 41.36 17.12
Var Diff 2 64.54 74.45 83.15 84.61 72.29 45.51 18.94

d1

Bias -2.24 -1.77 -1.43 -1.33 -1.17 -1.32 -1.57
MSE 1.16 0.77 0.54 0.38 0.25 0.18 0.13

Var Diff 1 0.02 0.04 0.05 0.05 0.02 0.02 0.01
Var Diff 2 0.39 0.22 0.15 0.10 0.05 0.03 0.02

d2

Bias 1.53 2.05 2.97 4.15 5.59 7.90 11.47
MSE 1.12 0.86 0.58 0.53 0.55 0.79 1.43

Var Diff 1 0.01 0.11 0.03 0.04 0.03 0.02 0.01
Var Diff 2 0.38 0.29 0.12 0.09 0.05 0.03 0.02

Table 2: Measures of interest ×102 for DGP3 with β = 1 and its parameters.

Test statistic
Number of frequencies

N .5 N .55 N .6 N .65 N .7 N .75 N .8

size
ξ̂N 0.05 0.07 0.114 0.188 0.382 0.67 0.936

ξ̂fc,N 0.04 0.022 0.028 0.024 0.028 0.042 0.068

power
ξ̂N 0.824 0.942 0.986 1 1 1 1

ξ̂fc,N 0.954 0.958 0.978 0.994 1 1 1

Table 3: Size and power of the tests for fractal non-connectivity based on ξ̂N and ξ̂fc,N .

to achieve a nominal significance level while the test is seriously oversized when larger frequencies
are used. On the other hand, the power of the test against fractal connectivity is examined by
using DGP1. The power is reasonably good for all frequencies considered. We also considered
the test for fractal non-connectivity when the series is fractionally cointegrated, based on the test
statistic ξfc,N in (2.29). The model used in the simulation is DGP4 with β = 1. Compared to the
non-cointegrated case, note that a nearly nominal size level is obtained regardless of any frequency
used. The power for the cointegrated case is considered based on DGP3 with β = 1. It also shows
an excellent power for all frequencies.

16



5 Local Whittle plots

Local Whittle plots are plots of parameter estimates or quantities derived from these as functions of
the tuning parameter m in (1.8), usually also supplemented by confidence intervals if appropriate.
We introduce here a local Whittle plot in connection to fractal connectivity (Section 5.1) and
discuss some issues behind a local Whittle plot for a phase parameter φ (Section 5.2). In Section
5.3, we also list the local Whittle plots that we suggest to examine for a bivariate series. These
plots are then used with data illustrations in Section 6.

5.1 Case of fractal (non-)connectivity

The quantity that we suggest to consider in connection to fractal (non-)connectivity is

ρ2 =
ω2

12

ω11ω22
=
r2

1 + r2
2

ω11ω22
, (5.1)

and to examine its local Whittle plot based on

ρ̂2 =
ω̂2

12

ω̂11ω̂22
=
r̂2

1 + r̂2
2

ω̂11ω̂22
. (5.2)

Both ρ2 and ρ̂2 take values in [0, 1]. Under H0 in (2.22) (that is, fractal non-connectivity), we have

mρ̂2 =
m

|Ω̂|
(r̂2

1 + r̂2
2) =

ξ̂N
2

d→ χ2(2)

2
(5.3)

and under the alternative (that is, fractal connectivity), by using Theorem 2.1 (and the subsequent
discussion) and the delta method, we have

√
m
(
ρ̂2 − ρ2

) d→ N (0, σ2
ρ), (5.4)

where

σ2
ρ =

2ω2
12|Ω|2

ω3
11ω

3
22

. (5.5)

A local Whittle plot tracking ρ̂2 could then be supplemented by both a confidence interval based
on (5.4)–(5.5), and by a critical value based on (5.3). A similar approach can be taken in the case
of fractional cointegration, but in view of (2.29), based on

ρ2
fc =

ν2
0r

2
1 + (ν0 − 1)2r2

2

(ν0 − 1)2ω11ω22
, ρ̂2

fc =
ν̂0

2r̂2
1 + (ν̂0 − 1)2r̂2

2

(ν̂0 − 1)2ω̂11ω̂22
.

The asymptotic result in (5.3) then remains the same but the asymptotic variance in (5.5) has to
be replaced accordingly by using Theorem 2.2 and the delta method.

The above approach is illustrated in Figure 1 for both fractally non-connected (left plot) and
connected (middle plot) cases. For the non-connected case, we consider DGP2 in Section 4.1 and,
for the connected case, we consider DGP1. The quantities ρ̂2 are plotted with 95% confidence
intervals based on (5.4)–(5.5), and the dashed line represents the critical value for fractal non-
connectivity based on (5.3). Note that the critical values also depend on the number of frequencies.
For the fractally non-connected case (left plot), it is observed that ρ̂2 are below the critical values,
hence we do not reject H0 at the 5% significance level. On the other hand, in the middle plot, the
estimated ρ̂2 are well above the critical values, hence suggesting that the data follow a fractally
connected model.
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Figure 1: The local Whittle plot for ρ̂2 (in solid line) with 95% confidence intervals (in dotted line)
under H1 together with critical values (in dashed line) under H0. Left: fractally non-connected
model. Middle: fractally connected model. Right: fractionally cointegrated model.

Remark 5.1 A somewhat bothersome feature of the results presented in this work is that the cases
of fractional non-cointegration and fractional cointegration are treated separately. It is supposedly
understood that a fractionally cointegrated model could be tried first and if β = 0 cannot be
rejected, a fractionally non-cointegrated model could then be refit. A related question is then
how fractional cointegration could be detected by working with a fractionally non-cointegrated
model and the local Whittle estimation (1.7)–(1.8). In the non-cointegrated model formulation,
fractional cointegration corresponds to (1.12) but recall also that (1.12) has to be excluded from
the assumptions on the model parameters in Theorems 2.1 and 2.2. A more specific question is
then whether Theorems 2.1 and 2.2 can be extended to accommodate the case (1.12).

We do not answer the latter question here but may do so in a future work. We nevertheless
suggest that it may still be interesting to examine informally a local Whittle plot for the quantity
ρ2 in (5.1) even in connection to fractional cointegration. By (1.12), the quantity ρ2 becomes

ρ2 = 1 (5.6)

in the case of fractional cointegration, and the local Whittle plot for ρ2 should be indicative of (5.6).
For example, the right panel of Figure 1 illustrates this point for the cointegrated model DGP3.
This is by far a formal test but if ρ̂2 appears to be quite smaller than 1, there is no evidence a
priori to reject a fractionally non-cointegrated model. Some of these points are illustrated further
on real data in Section 6. We also stress that the confidence intervals are not valid for a fractionally
cointegrated model but are included in line with other plots.

5.2 Case of phase parameter

We shall argue here that in some cases, the local Whittle plot of the phase parameter, to be referred
to as the local Whittle phase plot, requires more careful interpretation, and we shall suggest its
modification. To illustrate our thinking, consider DGP1 in Section 4.1 with sample size N = 500.
Figure 2, left panel, shows a corresponding local Whittle phase plot. Observe that for some values
of the tuning parameter m, the phase estimate is far from the true value but close to the boundary
value −π/2. This observation should, in principal, not be surprising: the phase parameter φ enters
into the model (1.2) and the likelihood (3.2)–(3.3) through a periodic function, and other related
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Figure 2: Left: Local Whittle phase plot with true value in dashed horizontal line. Middle: Objec-
tive function R(D̂, φ) with m = 35. Right: The estimates of g21 = ω21e

iφ, for a range of values of
m, with those having estimated ω21 < 0 in circle.

phase plots (e.g. the spectral phase plots for multivariate time series) have a similar feature. There
are nevertheless a number of issues that, in our view, require further attention.

The shape of the local Whittle phase plot in Figure 2 can be explained from at least several
angles. First, one could examine the objective function (3.2)–(3.3) of the local Whittle method as a
function of the phase, keeping the two LRD parameters fixed at the estimated values. Moreover, it
is instructive to plot this function not only for φ ∈ (−π/2, π/2) but for a wider range φ ∈ (−π, π).
Figure 2, middle panel, depicts such a function for the same realization used in Figure 2, left plot,
taking m = 35. The dashed vertical line indicates the initial value of the phase estimate in the
optimization. The solid vertical lines are at ±π/2. Note from the plot that the objective function
has two local minima over φ ∈ (−π, π), having the same function value but separated exactly by
the distance π on the horizontal axis. The right local minimum is close to the true value but is not
selected since it falls outside the interval (−π/2, π/2). For this value of m, the left local minimum
falls in (−π/2, π/2) and is selected for the phase estimate. We also note that if the initial estimate
(dashed line) was further to the right, some optimization algorithms might yield the boundary
point π/2 as the phase estimate (which we also observed for other realization but do not include
the plots for the shortness sake).

Further insight into the local Whittle phase plot can be provided by considering the phase
estimates along with the estimates of the parameter ω21 and, even better, by focusing on the
estimates of g21 = ω21e

iφ in the complex plane. They are plotted in Figure 2, right plot, for the
same realization used in Figure 2, left plot, and the same values of m. The points in the second
and third quadrants are marked as circles in the plot. Since a phase belongs to (−π/2, π/2) in our
model parametrization, these points will have their estimated ω21 < 0 and φ ∈ (−π/2, 0), in fact,
with the corresponding phases close to −π/2 when the points are in the second quadrant.

The preceding discussion shows that the observed oscillations in the local Whittle phase plot
are associated with transitions of the estimates of ω21 from one sign to the other. To avoid such
sharp transitions, a natural modification would then consist of defining the phase estimates over
(−π, π) associated with a fixed sign of the estimates of ω21. For example, to track positive ω̂21, we
modify the phase parameter estimator with values in the range (−π, π) as

φ̂+ =


φ̂, if ω̂21 > 0,

φ̂+ π, if ω̂21 < 0, − π/2 < φ̂ ≤ 0,

φ̂− π, if ω̂21 < 0, 0 < φ̂ < π/2.

(5.7)
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Figure 3: The local Whittle phase plots with modified phase estimates φ̂+(left) and φ̂− (middle).
Right: The local Whittle phase plot with confidence intervals (in dashed lines). The horizontal line
marks the value π/2.

That is, we are effectively using the parametrization on g21 = ω21e
iφ+ with ω21 > 0 and φ+ ∈ (−π, π)

(see also Remark 5.2).
This modification is illustrated in Figure 3, left plot. The solid line represents the original phase

estimates and the dashed line corresponds to the proposed modification. It is also possible to track
negative ω̂21 by considering

φ̂− =


φ̂, if ω̂21 < 0,

φ̂− π, if ω̂21 > 0, 0 ≤ φ̂ < π/2,

φ̂+ π, if ω̂21 > 0, − π/2 < φ̂ < 0,

(5.8)

as depicted in Figure 3, middle panel. Here, we are effectively using the parametrization g21 =
ω21e

iφ− with ω21 < 0 and φ− ∈ (−π, π).
In practice, it is not known a priori whether the true parameter ω21 is positive (or negative).

Which modification of the local Whittle phase plot, positive or negative, should one use? Our
practical suggestion is to decide by the majority rule of sign(ω̂21) over some range of m, say [N .5] to
[N .8]. For instance, the local Whittle phase plot in Figure 2 points in favor of positive modification.
Whichever modification is adopted, the user should keep in mind that the phase estimates outside
(−π/2, π/2) should actually be viewed as those in (−π/2, π/2), after a suitable shift by ±π and
a change of the sign of ω̂21. As with all local Whittle plots, one reason to use a modified local
Whittle phase plot is to assess the bias and the variability in the estimates, as to choose the tuning
parameter m in balancing them. As shown in Tables 1 and 2, a modified local Whittle phase
estimate combined with a phase confidence interval determined by Theorem 2.1 provides a good
characterization of the variability of the (modified) phase parameter estimates. An example of a
final modified local Whittle phase plot that we suggest to use is given in Figure 3, right panel,
where confidence intervals for phase parameter are added to the positive phase modification.

Remark 5.2 With the discussion around (5.7)–(5.8), it might seem that starting with the
parametrization g21 = ω21e

iφ where ω21 > 0 and φ ∈ (−π, π) would resolve some of the issues
discussed in this section. The latter parametrization, however, would bring its own issues. First,
some of the formulas would be more involved to conform to the condition ω21 > 0, for example, the
expression (3.1). Second, similar oscillatory local Whittle phase plots would also be expected but
now for phase parameters φ close to ±π. A modification could then similarly be used by mapping
some of the estimates in a periodic manner through ±2π.
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Figure 4: Time plots of RVs of SP and FTSE from Jan 2010 to Dec 2016.

5.3 Summary of plots

We sugget to examine the following 9 local Whittle plots of parameters and quantities of interest
when having a bivariate series, possibly exhibiting long memory. The first 4 plots concern the
fractionally non-cointegrated case and are the local Whittle plots of:

• d̂1 and d̂2;

• φ̂ (as discussed in Section 5.2);

• r̂1 and r̂2;

• ρ̂2 (as discussed in Section 5.1).

The other 5 plots concern the fractionally cointegrated case and are the local Whittle plots of:

• β̂;

• d̂1 and d̂2;

• φ̂ (as discussed in Section 5.2);

• r̂1 and r̂2;

• ρ̂2
fc (as discussed in Section 5.1).

An example of a figure with these 9 plots is Figure 5, discussed in greater detail in the next section.

6 Real data applications

The first data set concerns the so-called realized volatility (RV), obtained from the Oxford-Man
Institute of Quantitative Finance2 and processed by using the so-called realized kernels (RK) of
Barndorff-Nielsen, Hansen, Lunde and Shephard (2009) to correct the possible bias of RV due to

2 http://realized.oxford-man.ox.ac.uk/
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Figure 5: The local Whittle plots for SP and FTSE realized volatility.

microstructure dynamics. Two stock indices are considered, S&P 500 and FTSE. This data set
aggregates 5-min within-day returns and covers 4414 trading days ranging from Jan 3, 2000 to Dec
30, 2016. The missing data due to different trading days are imputed by a linear interpolation.
Figure 4 shows the time plots of RVs of the two stock indices.

Figure 5 presents the 9 local Whittle plots discussed in Section 5.3 for the RV data. A number of
observations are in place. We first comment on the plots for the fractionally non-cointegrated case
(with “w/o coint” in the title). In fact, these plots are consistent with what would be expected if
the local Whittle analysis without fractional cointegration is applied to a fractionally cointegrated
time series. Indeed, in this case, larger values (close to 1) of ρ̂2 are expected as discussed in Remark
5.1 and are also manifested in Figure 5. The values of d̂1 and d̂2 are also expected to be close to
each other (cf. (1.12)) and appear such in the corresponding local Whittle plot of Figure 5. Finally,
one also expects and has both the phase estimate φ̂ and hence r̂2 close to 0, as noted at the end of
Remark 2.4.
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Figure 6: Time plots of the US inflation rates for goods and services from Feb 1956 to Jan 2008.

Turning to the plots for the fractionally cointegrated case (with “w/ coint” in the title), the
local Whittle plot of β̂ also suggests fractional cointegration with β around 1. The local Whittle
plots of d̂1 and d̂2, as expected, suggest d1 < d2 though d2 might actually be outside the stationarity
regime d2 < .5. The local Whittle plot of φ̂ is, in fact, modified as in Section 5.2, with several
values of φ̂ falling below −π/2. The large confidence intervals for φ̂ at some numbers of m are due
to a small estimate ω̂11 (see the variance expression for φ̂ in Theorem 2.2). The local Whittle plots
for both r̂1, r̂2 and ρ̂2

fc suggest that the underlying model is non-connected; for example, note that

many of the values of ρ̂2
fc are below or around the critical value line in dashed. Thus, in conclusion,

Figure 5 suggests that a fractionally cointegrated but fractally non-connected model is suitable for
the RVs of S&P 500 and FTSE.

The second data set concerns the US monthly inflation rates for goods and services. These are
defined as

gn = 1200
CPIcn − CPIcn−1

CPIcn−1

, sn = 1200
CPIsn − CPIsn−1

CPIsn−1

, n = 1, . . . , 624,

where {CPIcn} and {CPIsn} are the corresponding Consumer Price Indices for the period of January
1956–January 2008, and available form the Bureau of Labor Statistics. In connection to long
memory, this bivariate series was analyzed in Baillie, Chung and Tieslau (1996), Doornik and
Ooms (2004), Sela and Hurvich (2009), Sela (2010), Baillie and Morana (2012), Kechagias and
Pipiras (2017). The time plots of the two series are given in Figure 6.

The local Whittle plots for this data set are presented in Figure 7. The key observation from
these plots is that both fractionally non-cointegrated and fractionally cointegrated models seem
suitable for the data. Note from the plots of ρ̂2 and ρ̂2

fc that the models are suggested as fractally
connected. Thus, in conclusion, a fractally connected model with or without fractional cointegration
seems suitable. Kechagias and Pipiras (2017), in particular, advocate to use a model with fractional
cointegration.
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Figure 7: The local Whittle plots for the US inflation rates for goods and services.

7 Conclusions

In this work, we studied the asymptotics of all local Whittle estimators for bivariate stationary
systems. We were motivated by the applications to fractal (non-)connectivity, and suggested to
work in the “Complex” rather than “Polar” parametrization. We also discussed several new or
modified local Whittle plots, and recommended to use and examined a list of these plots for real
data.

Several questions raised in or related to this work could be examined in the future. As noted
in Remark 2.4, it might be interesting to understand the local Whittle estimators (applied without
cointegration) for fractionally cointegrated case. The conclusions about the RVs in Section 6 calls
for appropriate fractionally cointegrated but fractally non-connected time series models. Another
natural question is what happens for multivariate series in dimensions higher than 2.
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A Proofs of Theorems 2.1 and 2.2

As noted in the beginning of Section 2, we focus on calculating the information matrix only, and
shall make a number of simplifying replacements that are known to be justifiable. We consider first
Theorem 2.1 in greater detail, and then only outline what is different for Theorem 2.2.

Observe from (1.8) that the negative log-likelihood is given as

Q(θ) = log |Ω| − 2(d1 + d2)
1

m

m∑
j=1

log(λj) +
1

|Ω|
TX(θ), (A.1)

where |Ω| = ω11ω22 − ω2
12 is the determinant of |Ω|,

TX(θ) = ω11A
(0)
22 + ω22A

(0)
11 − 2ω12<(A

(0)
12 e

iφ), (A.2)

and we set

A(k)
pq =

1

m

m∑
j=1

λ
dp+dq
j IX,pq(λj)(log λj)

k, p, q = 1, 2, k = 0, 1, 2, (A.3)

where IX,pq is the (p, q)th entry of the periodogram IX of X. The first derivative (∂/∂θ)Q(θ) is
given by

∂Q

ω11
=
ω22

|Ω|
− ω22

|Ω|2
TX(θ) +

A
(0)
22

|Ω|
,

∂Q

ω12
= −2ω12

|Ω|
+

2ω12

|Ω|2
TX(θ)− 2<(A

(0)
12 e

iφ)

|Ω|
,

∂Q

ω22
=
ω11

|Ω|
− ω11

|Ω|2
TX(θ) +

A
(0)
11

|Ω|
,

∂Q

∂φ
= 2ω12=(A

(0)
12 e

iφ),

∂Q

∂d1
= −2L+

2ω22

|Ω|
A

(1)
11 −

2ω12

|Ω|
<(A

(1)
12 e

iφ),
∂Q

∂d2
= −2L+

2ω11

|Ω|
A

(1)
22 −

2ω12

|Ω|
<(A

(1)
12 e

iφ),

where L = m−1
∑m

j=1 log λj as appearing in (2.4).
The information matrix is obtained next by calculating the second derivative matrix of Q(θ)

and taking expectation. We shall suppose for simplicity that E(IX,pq(λj)) can be replaced by its

theoretical counterpart ωpqe
−iφpqλ

−dp−dq
j , p, q = 1, 2 (φpp = 0, φ12 = φ = −φ21), and hence

EA(0)
pq = ωpqe

−iφpq , EA(1)
pq = ωpqe

−iφpqL, EA(2)
pq = ωpqe

−iφpqM, (A.4)

where, in addition, M = m−1
∑m

j=1(log λj)
2 as in (2.4). Then, for example,

∂2Q

∂ω2
11

= − ω
2
22

|Ω|2
+

2ω2
22

|Ω|3
TX(θ)− 2ω22

|Ω|2
A

(0)
22 , E

(
∂2Q

∂ω2
11

)
= − ω

2
22

|Ω|2
+

2ω2
22

|Ω|3
2|Ω| − 2ω2

22

|Ω|2
=
ω2

22

|Ω|2
,

∂2Q

∂φ2
=

2ω12

|Ω|
<(A

(0)
12 e

iφ), E
(
∂2Q

∂φ2

)
=

2ω2
12

|Ω|
,

∂2Q

∂d2
1

=
4ω22

|Ω|
A

(2)
11 −

2ω12

|Ω|
<(A

(2)
12 e

iφ), E
(
∂2Q

∂d2
1

)
=

4ω11ω22 − 2ω2
12

|Ω|
M,
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and so on. The information matrix is then given by

I(θ) =



ω2
22
|Ω|2

ω2
12
|Ω|2 −2ω12ω22

|Ω|2 0 −2ω22
|Ω| L 0

ω2
11
|Ω|2 −2ω11ω12

|Ω|2 0 0 −2ω11
|Ω| L

2(ω11ω22+ω2
12)

|Ω|2 0 2ω12
|Ω| L

2ω12
|Ω| L

2ω2
12
|Ω| 0 0

2(2ω11ω22−ω2
12)

|Ω| M −2ω2
12
|Ω| M

2(2ω11ω22−ω2
12)

|Ω| M


. (A.5)

Now, observe that, as m→∞,

L =
1

m

m∑
j=1

(log(j/m) + log(2πm/N)) =

∫ 1

0
log xdx+ log(2πm/N) + o(1) ∼ log(m/N), (A.6)

and similarly one can show (and as well known) that

M ∼ (log(m/N))2, M − L2 = 1 + o(1). (A.7)

By taking the inverse of I(θ) and using these asymptotic orders of L,M and M − L2 gives the
asymptotic variance Γ as in (2.2). See also the discussion following Theorem 2.1.

Turning to fractional cointegration and Theorem 2.2, the negative log-likelihood can be written
as (A.1) but replacing X by BX, that is,

Q1(θ1) = log |Ω| − 2(d1 + d2)
1

m

m∑
j=1

log λj +
1

|Ω|
TBX(θ1), (A.8)

where θ1 = (β, θ) and TBX(θ1) is defined as in (A.2)–(A.3) but replacing X by BX. Since BX has
the same spectral density as X in Theorem 2.1, we continue having (A.4). Moreover, since B and
hence β appear only in BX, the information matrix for the parameters in θ is exactly the same as
that given in (A.1). We thus need only to find the entries of the information matrix related to β.
For example, we note that

IBX,11(λ) = IX,11(λ)− 2β<(IX,12(λ)) + β2IX,22(λ),

IBX,12(λ) = IX,11(λ)− βIX,12(λ), IBX,22 = IX,22(λ).

Then, for example,

∂2Q1

∂β2
=

1

|Ω|
ω22

m

m∑
j=1

λ2d1
j (2IX,22(λj))

and

E
(
∂2Q1

∂β2

)
=

2ω2
22

|Ω|

m∑
j=1

λ−2ν0
j =

2ω2
22

|Ω|
λ−2ν0
m

(1− 2ν0)
+ o(1),

where ν0 = d2 − d1, since

1

m

m∑
j=1

λ−2ν0
j =

(
2πm

N

)−2ν0 ∫ 1

0
x−2ν0dx+ o(1) =

λ−2ν0
m

1− 2ν0
+ o(1).
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The row of the information matrix associated with β can similarly be shown to be

Iβ(θ1) = (Iβ Iβω11 Iβω22 Iβω12 Iβφ Iβd1 Iβd2) , (A.9)

where

Iβ =
2ω2

22λ
−2ν0
m

|Ω|(1− 2ν0)
, Iβω11 = 0, Iβω22 = −2ω12 cosφ

|Ω|
λ−ν0m

1− ν0
, Iβω12 =

2ω22 cosφ

|Ω|
λ−ν0m

1− ν0
,

Iβφ = −2ω12ω22 sinφλ−ν0m

|Ω|(1− ν0)
, Iβd1 =

2ω12ω22 cosφλ−ν0m

|Ω|

(
ν0

(1− ν0)2
− L

1− ν0

)
= −Iβd2 .

The limiting covariance matrix Υβ in Theorem 2.2 is obtained as the inverse of the information
matrix.

B Proofs of Theorems 2.3 and 2.4

The proof of Theorem 2.3 is similar to that of Theorem 2.1. We present here only the negative
log-likelihood and corresponding information matrix under Parametrization C. With a parameter
vector θ = (g11, g22, r1, r2, d1, d2) and |G| = g11g22 − r2

1 − r2
2, the negative log-likelihood is written

as

P (θ) = log |G| − 2(d1 + d2)
1

m

m∑
j=1

log λj +
1

|G|
SX(θ), (B.1)

where
SX(θ) = g11A

(0)
22 + g22A

(0)
11 − 2r1<(A

(0)
12 ) + 2r2=(A

(0)
12 ).

Then, calculating the expectation of the second derivative of P (θ) and substituting

EA(0)
pq = gpq, EA(1)

pq = gpqL, EA(2)
pq = gpqM (B.2)

gives the information matrix as

g222
|G|2

r21+r22
|G|2 −2r1g22

|G|2 −2r2g22
|G|2 −2g22

|G| L 0

g211
|G|2 −2r1g11

|G|2 − r2g11
|G|2 0 −2g11

|G| L

2g11g22+2r21−2r22
|G|2

4r1r2
|G|2

2r1
|G|L

2r1
|G|L

2g11g22−2r21+2r22
|G|2

2r2
|G|L

2r2
|G|L

2(2g11g22−r21−r22)
|G| M −2(r21+r22)

|G| M

2(2g11g22−r21−r22)
|G| M


. (B.3)

With fractional cointegration in Theorem 2.4 under Parametrization C, we can follow similar
arguments as in the proof of Theorem 2.2. Indeed, replacing the periodogram in (B.1) by that of
BX gives one extra parameter β. The information matrix for the parameter θ is exactly the same
as in (B.3) and the information matrix associated with β can be shown to be:

Iβ =
2g2

22λ
−2ν0
m

|G|(1− 2ν0)
, Iβg11 = 0, Iβg22 = − 2r1λ

−ν0
m

|G|(1− ν0)
, Iβr1 =

2g22λ
−ν0
m

|G|(1− ν0)
, Iβr2 = 0,

Iβd1 = −2r1g22λ
−ν0
m

|G|

(
ν0

(1− ν0)2
− L

1− ν0

)
= −Iβd2 .
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C Proofs for optimization reduction

We prove here the statements made in Section 3. Though (3.4)–(3.5) follows from (3.8)–(3.9) as
noted at the end of Section 3, we shall provide two independent proofs since they are not very long.
To show (3.4)–(3.5), observe from (3.3) that

Ω̂(φ,D) = <

(
m−1

∑m
j=1 λ

2d1
j IX,11(λj) m−1

∑m
j=1 λ

d1+d2
j IX,12(λj)e

iφ

m−1
∑m

j=1 λ
d1+d2
j IX,21(λj)e

−iφ m−1
∑m

j=1 λ
2d2
j IX,22(λj)

)
.

Hence,

|Ω̂(φ,D)| =
(
m−1

m∑
j=1

λ2d1
j IX,11(λj)

)(
m−1

m∑
j=1

λ2d2
j IX,22(λj)

)

−<
(
m−1

m∑
j=1

λd1+d2
j IX,12(λj)e

iφ
)
<
(
m−1

m∑
j=1

λd1+d2
j IX,21(λj)e

−iφ
)
.

Observe further that the latter term reduces to((
m−1

m∑
j=1

λd1+d2
j <(IX,12(λj))

)
cosφ−

(
m−1

m∑
j=1

λd1+d2
j =(IX,12(λj))

)
sinφ

)2
=: (A cosφ−B sinφ)2.

Then, for the objective function R(φ,D) in (3.2), solving

∂R(φ,D)

∂φ
= 0

is equivalent to solving

−2(A cosφ−B sinφ)(−A sinφ−B cosφ) = 0. (C.1)

Since tanφ = −B/A corresponds to the local minimum, we have

φ̂e = − arctan

(
m−1

∑m
j=1 λ

d1+d2
j =(IX,12(λj))

m−1
∑m

j=1 λ
d1+d2
j <(IX,12(λj))

)
.

In the case of fractional cointegration, note that (3.3) becomes

Ω̂(φ,D) = <
( 1

m

m∑
j=1

ΦD,φ(λj)BIX(λj)B
′ΦD,φ(λj)

)
. (C.2)

Since

BI(λj)B
′ =

(
IX,11(λj)− 2β<(IX,12(λj)) + β2IX,22(λj) IX,12(λj)− βIX,22(λj)

IX,12(λj)− βIX,22(λj) IX,22(λj)

)
, (C.3)

by using the periodogram (C.3) in the above proof gives the explicit estimator of the phase param-
eter as in (3.7).

Turning to (3.8)–(3.9), note that

|Ĝ(D)| =
∣∣∣ 1

m

m∑
j=1

λDj IX(λj)λ
D
j

∣∣∣ =
∣∣∣( m−1

∑m
j=1 λ

2d1
j IX,11(λj) m−1

∑m
j=1 λ

d1+d2
j IX,12(λj)

m−1
∑m

j=1 λ
d1+d2
j IX,21(λj) m−1

∑m
j=1 λ

2d2
j IX,22(λj)

)∣∣∣
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=
(
m−1

m∑
j=1

λ2d1
j IX,11(λj)

)(
m−1

m∑
j=1

λ2d2
j IX,22(λj)

)

−
(
m−1

m∑
j=1

λd1+d2
j IX,12(λj)

)(
m−1

m∑
j=1

λd1+d2
j IX,21(λj)

)
.

Since IX,21(λj) = IX,12(λj), the latter term becomes

(
m−1

m∑
j=1

λd1+d2
j <(IX,12(λj))

)2
+
(
m−1

m∑
j=1

λd1+d2
j =(IX,12(λj))

)2
=: A2 +B2.

Therefore,

|Ω̂(D, φ̂e)| − |Ĝ(D)| = −(A cos φ̂e −B sin φ̂e)2 + (A2 +B2) = (A sin φ̂e +B cos φ̂e)2 = 0

from (C.1). Thus, the parameter D estimates are identical for (3.4) and (3.8) which implies that
D can be estimated by using either Parametrization P or Parametrization C.
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