
Modeling bivariate long-range dependence with general phase∗†

Stefanos Kechagias
SAS Institute

Vladas Pipiras
University of North Carolina

August 9, 2019

Abstract

Bivariate time series models are considered that are suitable for estimation, that have inter-
pretable parameters and that can capture the general semi-parametric formulation of bivariate
long-range dependence, including a general phase. The models also allow for short-range depen-
dence and fractional cointegration. A simulation study to test the performances of a conditional
maximum likelihood estimation method is carried out, under the proposed models. Finally,
an application is presented to the U.S. inflation rates in goods and services where models not
allowing for general phase suffer from misspecification.

1 Introduction

In this work, we are interested in modeling bivariate (R2–vector) stationary time series exhibiting
long-range dependence (LRD, in short). In the univariate case, stationary long-range dependent
(LRD) time series models have the autocovariance function decaying slowly like a power-law func-
tion at large lags, or the spectral density diverging like a power-law function at the zero frequency.
The univariate LRD is understood well in theory and used widely in applications. See, for example,
Park and Willinger (2000), Robinson (2003), Doukhan et al. (2003), Palma (2007), Giraitis et al.
(2012), Beran et al. (2013), Pipiras and Taqqu (2017).

Bivariate and, more generally, multivariate (vector-valued) LRD time series models have also
been considered by a number of researchers. But theoretical foundations for a general class of
such models were laid only recently in Kechagias and Pipiras (2015). In particular, Kechagias and
Pipiras (2015) stressed the importance of the so-called phase parameters. Turning to the bivariate
case which is the focus of this work, the phase φ appears in the cross-spectrum of a bivariate
LRD series around the zero frequency and controls the (a)symmetry of the series at large time lags
±∞. More specifically, the matrix-valued spectral density function1 f(λ) of a bivariate LRD series
{Xn}n∈Z={(X1,n, X2,n)′}n∈Z satisfies

f(λ) ∼
(
ω11|λ|−2d1 ω12|λ|−(d1+d2)e−isign(λ)φ

ω12|λ|−(d1+d2)eisign(λ)φ ω22|λ|−2d2

)
, as λ→ 0, (1.1)

∗AMS subject classification. Primary: 62M10, 62M15. Secondary: 60G22, 42A16.
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1The following convention is used here. The autocovariance function γ is defined as γ(n) = EXnX ′0 and the

spectral density f(λ) satisfies γ(n) =
∫ π
−π e

inλf(λ)dλ. The convention is different from Kechagias and Pipiras (2015),

where EX0X
′
n is used as the autocovariance function, but is the same as in Brockwell and Davis (2009), Pipiras and

Taqqu (2017).



where ∼ indicates the asymptotic equivalence, ω11 > 0, ω22 > 0, ω12 ∈ R and φ ∈ (−π/2, π/2).
The parameter dj ∈ (0, 1/2) is the LRD parameter of the component series {Xj,n}n∈Z, j = 1, 2.
The case dj = 0 is associated with short-range dependence or, for short, SRD (and dj < 0 with the
so-called anti-persistence), and it will also be included in the discussion below.

There are currently no parametric time series models of bivariate LRD with a general phase
that can be used in estimation and applications.2 To emphasize this perhaps surprising point,
consider, for example, a commonly used bivariate LRD model known as VARFIMA(0, D, 0) (Vector
Autoregressive Fractionally Integrated Moving Average), defined as a natural extension of the
univariate ARFIMA(0, d, 0) model by fractionally integrating the component series of a bivariate
white noise series, namely,

Xn =

(
X1,n

X2,n

)
=

(
(I −B)−d1 0

0 (I −B)−d2

)(
η1,n

η2,n

)
= (I −B)−Dηn = (I −B)−DQεn, (1.2)

where B is the backshift operator, I = B0 is the identity operator, D = diag(d1, d2) and both
{ηn}n∈Z = {(η1,n, η2,n)′}n∈Z and {εn}n∈Z are bivariate white noise series with zero means Eηn = 0,
Eεn = 0, and covariances Eηnη′n = Σ = QQ′, Eεnε′n = I2. Throughout the paper, the prime
indicates the transpose and covariance matrices of error terms such as Σ are assumed to be positive
definite. It turns out that the model (1.2) has necessarily a special phase

φ = (d1 − d2)π/2. (1.3)

That is, even if these models appear quite general, they are in fact very special from the phase
perspective. The main goal of this work is to study a class of parametric models, that allows for a
general phase, and to examine it through a simulation study and an application to real data, which
suggest the need for models beyond the special phase (1.3). For the latter point, in particular, a
phase different from (1.3) is suggested by a local Whittle analysis of Robinson (2008) (see also Baek
et al. (2019)) and the fitted models of this work will match the local Whittle phase very closely.

To achieve the described goal, we follow Kechagias and Pipiras (2015) who constructed a two-
sided VARFIMA(0, D, 0) model with a general phase by taking

Xn = (I −B)−DQ+εn + (I −B−1)−DQ−εn, (1.4)

where Q+, Q− are two real-valued invertible 2× 2 matrices, and {εn}n∈Z is as in (1.2). The reason
we refer to (1.4) as two-sided is the presence of B−1 in the second term of the right-hand side of
(1.4), which translates into having the leads of the innovation process εn in a linear representation
of Xn. Furthermore, as argued in Kechagias and Pipiras (2015), the two-sided fractional filters as
in (1.4) are critical – one-sided filters as in (1.2) would necessarily give a special phase (1.3). The
matrices Q+, Q− are responsible precisely for capturing bivariate (a)symmetry of the series at large
lags ±∞, and thus lead to a general phase.

There are, however, several issues in using the model (1.4) for estimation. For example, it
does not seem to be easy to determine or to use identifiability conditions for the model (1.4) in
terms of D, Q+ and Q− – see Section 9.3 in Pipiras and Taqqu (2017) for parallel questions in
the context of vector fractional Brownian motions. Another issue is that, in analogy with the
univariate ARFIMA(0, d, 0) model, we would like a parametric form of a bivariate LRD model to
be consistent with the semi-parametric formulation (1.1). In particular, it is then reasonable for the
sought model to have the same number of parameters as in (1.1), namely, 6 (d1, d2, ω11, ω12, ω22 and

2The work of Amblard and Coeurjolly (2011) is perhaps an exception but it uses increments of vector fractional
Brownian motion which assume the scaling behavior across all frequencies.
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φ). In this regard, note that even after an identification up to Q+Q
′
+ and Q−Q

′
−, the model (1.4)

has 8 parameters (d1, d2 and the 6 different entries of Q+Q
′
+ and Q−Q

′
−). In other words, there

are multiple choices of Q+Q
′
+ and Q−Q

′
− that lead to the same semi-parametric formulation (1.1).

We thus seek a reduced parametrization for Q+ and Q− that leads to model with 6 parameters,
and still yields the general semi-parametric form (1.1).

We will show here that the aforementioned goal can be achieved by taking Q− as

Q− =

(
c 0
0 −c

)
Q+ =: CQ+, (1.5)

for some real constant c. Note that model (1.4)–(1.5) indeed has 6 parameters (d1, d2, c and the
three different entries of Σ = Q+Q

′
+). Under the relation (1.5) and letting {Zn}n∈Z be a zero mean

bivariate white noise series with covariance matrix EZnZ ′n = Q+Q
′
+ =: Σ, we can rewrite (1.4) in

the more succinct form
Xn = ∆c(B)−1Zn, (1.6)

where the operator ∆c(B)−1 is defined as

∆c(B)−1 = (I −B)−D + (I −B−1)−DC. (1.7)

We shall refer to (1.6) as a general phase VARFIMA(0, D, 0) model or two-sided VARFIMA(0, D, 0)
model. Explicit formulas relating the parameters of the two-sided VARFIMA(0, D, 0) model and
the semi-parametric formulation (1.1) will be given below. As with the two-sided model (1.4),
we emphasize again that the parameter c (or matrix C) plays a natural role of controlling the
(a)symmetry. There might be other parametrizations that achieve this goal but not the one-sided
representation (1.2).

The preceding description of the model (1.6), in fact, omits several important points that will
be discussed in detail below. In particular, just touching upon these points, we shall distinguish
between the ranges |c| < 1 and |c| > 1, leading to two competing models when d1, d2 ∈ (0, 1/2).
For the purposes of capturing the semi-parametric form (1.1), either of the two ranges is sufficient
and can be used alone – this should not be too surprising since by symmetry, one could in principle
use the filter (1.7) with C at (I − B)−D instead of at (I − B−1)−D and then the two filters could
be related through the reciprocal relation c 7→ c−1 (see Section 2 for details). In addition to the
symmetry, we shall use the two ranges for the following two reasons. The first reason is numerical:
the numerical optimization over c should be aware of the competing models that may be selected
since likelihoods have local extrema around their parameter values. The second reason is that the
model (1.6) with c ∈ R will allow for one of the series to be SRD (with the corresponding d = 0)
and for the bivariate model still to have a general phase. In the latter case, as argued below, the
whole range of real c’s is needed to have a general phase.

The model (1.6)–(1.7) will also be extended in the following two natural directions. In one
direction, we shall include autoregressive and moving average parts, namely, consider a general
phase VARFIMA(p,D, q) model

Φ(B)Xn = ∆c(B)−1Θ(B)Zn, (1.8)

where Φ(B), Θ(B) are auto-regressive and moving average matrix polynomials of finite orders p and
q satisfying the usual stability and invertibility conditions. In the other direction, we shall allow
explicitly for a possibility of fractional cointegration. Fractional cointegration occurs when a linear
combination of the two component series has a shorter memory (smaller d) than the individual
component series. From a parametric standpoint, fractional cointegration is included in a model
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by replacing Xn by AXn where A = [1 − α; 0 1] is a 2 × 2 matrix and its first row plays the role
of a possible cointegrating vector reducing the memory.

In estimation of all our models, we shall use a possibly conditional Gaussian likelihood approach,
where the conditional part refers to writing the likelihood for Φ(B)Xn (or for Φ(B)AXn in the case
of cointegration). The likelihood approach will naturally require calculating the autocovariance
functions of some of the introduced models – explicit formulas for these will be given below. In
the c = 0 case, Sowell (1986) was the first to calculate (numerically) the autocovariance function
of the model (1.8) and perform exact likelihood estimation. Several estimation approaches (all
in the case c = 0), have been suggested since then. Ravishanker and Ray (1997) used Bayesian
methods to estimate parameters of VARFIMA models (see a recent corrigendum by Doppelt and
O’Harra (2019) discussing errors of that work). For other approaches (all in the case c = 0), see
Pai and Ravishanker (2009a, 2009b) who employed the EM and preconditioned conjugate gradient
algorithms, as well as Dueker and Starz (1998), Martin and Wilkins (1999), Sela and Hurvich
(2009), Sela (2010), Diongue (2010), Tsay (2010) and Doppelt and O’Harra (2018).

We should also emphasize that the analysis of this work is limited to the second-order prop-
erties of time series (that is, autocovariance, cross-correlation, cross-spectrum, and so on). Thus,
although the models (1.4) and (1.8) are expressed through two-sided and hence non-causal lin-
ear representations, their non-causal nature is irrelevant to the extent that these models are used
only as suitable parameterizations of bivariate long-range dependent models allowing for general
phase through their second-order properties. Somewhat surprisingly perhaps, explicit one-sided
representations for these two-sided models remain unknown; see Kechagias and Pipiras (2015).

The rest of the paper is structured as follows. General phase VARFIMA(0, D, 0) and
VARFIMA(p,D, q) series are presented in Sections 2 and 3, including the possibility of fractional
cointegration. Estimation and other tasks are considered in Section 4. Section 5 contains a simu-
lation study, and Section 6 contains an application to the U.S. inflation rates. Conclusions can be
found in Section 7.

2 General phase VARFIMA(0, D, 0) series

In this section, we consider the two-sided bivariate VARFIMA(0, D, 0) model (1.6)–(1.7) and denote

the corresponding series in this section as X
(c)
n . The following proposition and subsequent corollaries

and discussion are key. The notation c− and c+ below should not be confused with the negative
and positive parts of c.

Proposition 2.1 Let d1, d2 ∈ (0, 1/2) and Q+ be an invertible 2×2 matrix with real-valued entries.
For any φ ∈ (−π/2, π/2), there exist unique constants c = c− with |c| < 1 and c = c+ with |c| > 1

such that the series {X(c)
n }n∈Z defined by (1.6)–(1.7) has the phase parameter φ in (1.1). Moreover,

the constants c = c± have closed form given by

c± = c±(φ) =
2(a1 + a2)±

√
∆

2(a1 − a2 + tan(φ)(1 + a1a2))
, (2.1)

where

a1 = tan

(
πd1

2

)
, a2 = tan

(
πd2

2

)
and ∆ = 16a1a2 + 4(1 + a1a2)2 tan2(φ). (2.2)

When φ = arctan((a2 − a1)/(1 + a1a2)), the expressions in (2.1) should be interpreted as (a1 −
a2)/(a1 + a2) for c− and as ∞ for c+, and make the functions c−(φ) and 1/c+(φ) continuous at
this point.
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Proof: By using Theorem 11.8.3 in Brockwell and Davis (2009), the VARFIMA(0, D, 0) series
in (1.6)–(1.7) has a spectral density matrix

f(λ) =
1

2π
∆c(e

−iλ)−1Σ∆c(e
−iλ)−1∗, (2.3)

where the superscript ∗ denotes the complex conjugate operation. From (1.5) and by using the fact
that 1− e±iλ ∼ ∓iλ, as λ→ 0, we have

f(λ) ∼ 1

2π

(
(iλ)−D + (−iλ)−DC

)
Σ
(
(−iλ)−D + C(iλ)−D

)
, as λ→ 0. (2.4)

Next, by denoting Σ = (σjk)j,k=1,2 and using the relation ±i = e±iπ/2, we get that the (j, k) element
of the spectral density f(λ) satisfies

fjk(λ) ∼ gjkλ−(dj+dk), as λ→ 0+, (2.5)

where the complex constant gjk is given by

gjk =
σjk
2π

(e−iπdj/2 + (−1)j+1ceiπdj/2) · (eiπdk/2 + (−1)k+1ce−iπdk/2) (2.6)

and (−1)j+1, (−1)k+1 in (2.6) account for the different signs next to c’s in the diagonal matrix
C in (1.5). Focusing on the (1, 2) element, and by applying the polar-coordinate representation
z = z1

cos(φ)e
iφ of z = z1 + iz2 ∈ C with φ = arctan(z2/z1) to the two multiplication terms below

separately, we have

g12 =
σ12

2π

(
cos(

πd1

2
)(1 + c) + i sin(

πd1

2
)(c− 1)

)
·
(

cos(
πd2

2
)(1− c) + i sin(

πd2

2
)(1 + c)

)
=

σ12

2π

cos(πd12 ) cos(πd22 )

cos(φ1) cos(φ2)
(1− c2)e−iφ, (2.7)

where

φ = −(φ1 + φ2), φ1 = arctan

(
a1
c− 1

1 + c

)
and φ2 = arctan

(
a2

1 + c

1− c

)
(2.8)

with a1 and a2 given in (2.2).
By using the arctangent addition formula arctan(u) + arctan(v) = arctan( u+v

1−uv ) for uv < 1 (in
our case uv = −a1a2 < 0), we can rewrite φ as

φ = − arctan

(
a1

c−1
1+c + a2

1+c
1−c

1 + a1a2

)
=: h(c). (2.9)

For all d1, d2 ∈ (0, 1/2), the function h : (−1, 1)→ (−π/2, π/2) is strictly decreasing (and therefore
1-1) and also satisfies

lim
c↓−1

h(c) =
π

2
, lim

c↑1
h(c) = −π

2
.

Since h is continuous, it is also onto its range which completes the existence and uniqueness part
of the proof for c = c− ∈ (−1, 1). For the statement about c = c+, note that h(1/c) = −h(c) so
that the same conclusion also holds.

To obtain the formula (2.1), we invert the relation (2.9) to get the quadratic equation

(a1 − a2 + tan(φ)(1 + a1a2))c2 − 2(a1 + a2)c+ a1 − a2 − tan(φ)(1 + a1a2) = 0, (2.10)
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whose discriminant ∆ is given by

∆ = 16a1a2 + 4(1 + a1a2)2 tan2(φ)

and is always positive. The solutions of (2.10) are then given by

c+ =
2(a1 + a2) +

√
∆

2(a1 − a2 + tan(φ)(1 + a1a2))
, c− =

2(a1 + a2)−
√

∆

2(a1 − a2 + tan(φ)(1 + a1a2))
.

It can be checked that |c+| > 1 and |c−| < 1. Finally, the statements about the continuity can be
checked easily. �

Proposition 2.1 and its proof have a number of important consequences presented next.

Corollary 2.1 The spectral density of the time series {X(c)
n }n∈Z with c = c±(φ) in Proposition 2.1

satisfies the asymptotic relation (1.1) with φ and

ωjj =
σjj
2π

(1 + c2 + (−1)j+12c cos(πdj)), j = 1, 2, (2.11)

ω12 =
σ12

2π

cos(πd12 ) cos(πd22 )

cos(φ1) cos(φ2)
(1− c2), (2.12)

where Σ = Q+Q
′
+ = (σjk)j,k=1,2 and φ1, φ2 are given in (2.8).

Proof: The relations (2.11)–(2.12) follow from (2.5)–(2.6) and (2.7)–(2.8). �

Corollary 2.1 shows that the bivariate LRD model (1.6)–(1.7) when parametrized by d1, d2,Σ =
Q+Q

′
+ and either c = c− or c = c+, can be identified with the parameters d1, d2, w11, w22, w12 and

φ in the semi-parametric formulation (1.1). The following observations will contrast the models
with c− and c+, and provide additional insights into the models with |c| < 1 and |c| > 1. The next
results shows that the models (1.6)–(1.7) with c− and c+ are different, even if they both capture
the same formulation (1.1). We continue using the notation of Proposition 2.1.

Corollary 2.2 The series {X(c)
n }n∈Z with c = c−(φ) and {X(c)

n }n∈Z with c = c+(φ) satisfying
(2.11)–(2.12) are different, in the sense that their individual component and cross spectral density
functions are not the same.

Proof: For example, by arguing as in the proof of Proposition 2.1, the spectral density of the

first component of the series X
(c)
n is given by

f11(λ) =
σ11

2π

∣∣∣(1− e−iλ)−d1 + c(1− eiλ)−d1
∣∣∣2 =

σ11

2π
|1− eiλ|2d1

∣∣∣(1− eiλ)d1(1− e−iλ)−d1 + c
∣∣∣2

=
σ11

2π
|1− eiλ|2d1

∣∣∣ei(λ+π)d1 + c
∣∣∣2 =

σ11

2π

(
2 sin

λ

2

)−2d1(
1 + c2 + 2c cos((λ+ π)d1)

)
. (2.13)

Let the superscripts ± indicate the quantities and parameters associated with the model having
c = c±. By (2.11),

σ−11 = σ+
11

1 + c2
+ + 2c+ cos(πd1)

1 + c2
− + 2c− cos(πd1)

and hence, by (2.13),
f−11(λ) = f+

11(λ)r11(λ),
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where

r11(λ) =
1 + c2

− + 2c− cos((λ+ π)d1)

1 + c2
+ + 2c+ cos((λ+ π)d1)

1 + c2
+ + 2c+ cos(πd1)

1 + c2
− + 2c− cos(πd1)

.

Though r11(λ) ∼ 1 as λ → 0, r11(λ) is not equal to 1 across all λ, proving the statement for
component spectral densities. A similar argument can be made for the cross spectral densities,
which we omit for the shortness sake. �

Inclusion of c+ for the parameter c in the model (1.6)–(1.7) seems redundant in view of the
discussion and the results above. We include c+ for several reasons. One reason is that this inclusion
naturally provides symmetry in the considered model in the following sense. Note that the model
(1.6)–(1.7) can also be expressed as

X(c)
n = ∆+

c−1(B)−1Z̃n, (2.14)

where

∆+
c̃ (B)−1 = (I −B)−DC̃ + (I −B−1)−D, C̃ =

(
c̃ 0
0 −c̃

)
(2.15)

and {Z̃n}n∈Z is a zero mean bivariate white noise series with covariance matrix EZ̃nZ̃ ′n = CΣC. In
other words, the model (1.6)–(1.7) with c = c+ and |c+| > 1 corresponds to the model (2.14)–(2.15)
with c̃ = 1/c+ and |c̃| < 1, that is, the model symmetric to (1.6)–(1.7) where C with |c| < 1 is
moved from (I − B−1)−D to (I − B)−D. Though the models appear symmetric and can be used
to capture the same semi-parametric form of bivariate LRD, Corollary 2.2 shows that they are not
the same. Other reasons for including c = c+ will appear below.

Further insight on the differences between the models with c− and c+, and between the models
with |c| < 1 and |c| > 1 can be given through the following observations. Since c− and c+ are the
roots of the quadratic equation (2.10), note that

c−c+ =
a1 − a2 − tan(φ)(1 + a1a2)

a1 − a2 + tan(φ)(1 + a1a2)
.

For example, when d1 = d2, this relation reduces to

c− = − 1

c+
.

We stress again that X
(c−)
n and X

(c+)
n are two competing models for the same formulation of a

bivariate LRD. In addition, the models X
(c)
n and X

(1/c)
n can also be considered closely related in

the following sense. As in (2.13), the spectral density of the first component series of X
(c)
n is

f11(λ) =
σ11

2π

∣∣∣(1− e−iλ)−d1 + c(1− eiλ)−d1
∣∣∣2 =

σ11c
2

2π

∣∣∣(1− e−iλ)−d1 + c−1(1− eiλ)−d1
∣∣∣2 (2.16)

and thus also that of X
(1/c)
n with the proper choice of σ11. In other words, the component series

of X
(c)
n and X

(1/c)
n have identical second-order properties after suitable normalization. The cross

spectral density of X
(c)
n and X

(1/c)
n though are obviously different. In fact, as seen from the obser-

vations following (2.9) and, in particular, the fact that h(c) = −h(1/c), the models X
(c)
n and X

(1/c)
n

have the same phases which are of different signs. These observation have important practical
consequences. If the cross spectral density is relatively weak (that is, σ2

12/(σ11σ22) is small), it is

natural to expect that the models X
(c)
n and X

(1/c)
n will be hard to distinguish. This is what we also
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Figure 1: The function bd(c), c ∈ (−1, 1), in (2.17). Left: d > 0. Right: d < 0.

see in estimation, where numerical optimization for c might converge to a local extremum in the
neighborhood of the reciprocal of the chosen true value c.

The model (1.6)–(1.7) will be referred to as the general phase VARFIMA(0, D, 0) series (two-
sided VARFIMA(0, D, 0) series).

Remark 2.1 Technical issues of Proposition 2.1 aside, there is a simple way to see why the pro-
posed model will yield a general phase. Consider only the case c ∈ (−1, 1). Note that a generic
term e−iπd/2 + ceiπd/2 entering (2.6) can be expressed in polar coordinates as

e−iπd/2 + ceiπd/2 = ad(c)e
−ibd(c). (2.17)

The generic shape of the function bd(c), c ∈ (−1, 1), is given in Figure 1, left plot, for d ∈ (0, 1/2),
and right plot, for d ∈ (−1/2, 0). When d ∈ (0, 1/2), the range of bd(c), c ∈ (−1, 1), is (0, π/2)
and when d ∈ (−1/2, 0), it is (−π/2, 0). When combined into the phase φ of (2.7), this obviously
leads to the phase φ that covers the whole range (−π/2, π/2). This discussion also shows that, for
example, the choice Q− = cQ+, c ∈ (−1, 1), would not lead to a general phase parameter for the
resulting bivariate LRD models.

Remark 2.2 The case c = 0 corresponds to the phase φ = (d1 − d2)π/2 (and in particular not
necessarily φ = 0.) If the two component series are interchanged (so that d1 and d2 are interchanged,
and φ becomes −φ), then the constant c = c± in (2.1) changes to −c = −c±. We also note that
the relation (2.1) does not involve the covariance matrix Σ of the innovation terms, but that (2.11)
and (2.12) obviously do.

Remark 2.3 We also note the following important point regarding e.g. the boundaries c− = ±1
of the range c− ∈ (−1, 1). As c− → ±1, the phase parameter φ → ∓π/2. In the specification
ω12e

−iφ of the cross-spectrum constant, note that the cases φ = π/2 and φ = −π/2 are equivalent
by changing the sign of ω12, since ω12e

−iπ/2 = (−ω12)e−i(−π/2). In the model (1.6)–(1.7), the sign
of ω12 is the same as the sign of σ12. From a practical perpective, this observation means that for
the model (1.6)–(1.7) with c− close to 1 (−1, resp.), it would be common to estimate c− close to
−1 (1, resp.) and σ12 with the opposite sign, since the respective models are not that different.
This is also certainly what we observed in our simulations.

We conclude this section by arguing that the model (1.6)–(1.7) can also be used to capture
general phase when one of the component series is SRD (with the corresponding d = 0) and
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the other is LRD. (The component series can also be both SRD but this case is not particularly
interesting since for two SRD series, their spectral density at zero is the sum of autocovariances at
all lags and hence has zero phase φ = 0.) We formulate this as another proposition analogous to
Proposition 2.1. For the shortness sake, we suppose that d1 = 0 and d2 ∈ (0, 1/2), but a similar
result could be formulated when d2 = 0 and d1 ∈ (0, 1/2).

Proposition 2.2 Let d1 = 0, d2 ∈ (0, 1/2) and Q+ be an invertible 2 × 2 matrix with real-valued
entries. For any φ ∈ (−π/2, π/2), there exists a unique constant c ∈ R such that the series

{X(c)
n }n∈Z defined by (1.6)–(1.7) has the phase parameter φ in (1.1). Moreover,

c =
tanφ− a2

tanφ+ a2
, (2.18)

where a2 is defined in (2.2).

Proof: As in (2.7)–(2.8) of the proof of Proposition 2.1, the relationship between a phase φ
and a parameter c is

φ = − arctan
(
a2

1 + c

1− c

)
.

Solving for c leads to the relation (2.18). �

Note the key difference between Propositions 2.1 and 2.2: while there were two c’s leading to
the same phase in Proposition 2.1, there is only one c in Proposition 2.2. This is another reason
for considering both c− and c+ in a general phase VARFIMA(0, D, 0) model.

As in Corollary 2.1, the following relations among the rest of the parameters hold when d1 = 0:

ω11 =
σ11

2π
(1 + c)2, ω22 =

σ22

2π
(1 + c2 + (−1)j+12c cos(πd2)), ω12 =

σ12

2π

cos(πd22 )

cos(φ2)
(1− c2).

These are the same as (2.11)–(2.12) by taking d1 = 0.

Remark 2.4 There are a priori no issues with fitting the model (1.6)–(1.7) when a component
series is anti-persistent (that is, with the corresponding d < 0). But when the two d’s are of
the opposite signs, the model (1.6)–(1.7) will not yield a general phase. The latter fact could
be seen by employing informal arguments as in Remark 2.1. That is, note that the generic term
(2.17) now enters (2.6) through two multiplicative terms with the same signs of the exponents of
the exponentials. The resulting phase would then be the sum of bdj (c) appearing in (2.17) and
b−dk(−c), and would cover only part of either (0, π/2) or (−π/2, 0) as seen from Figure 1.

3 General phase VARFIMA(p,D, q) series

In this section, we generalize the model (1.6)–(1.7) by introducing autoregressive (AR, for short)
and moving average (MA, for short) components to capture potential short-range dependence
effects. We also consider models with fractional cointegration. For the one-sided model (1.2),
the ARMA extension has been achieved in a number of ways. Naturally, we focus on extensions
that preserve the general phase and identifiability properties. We also consider the problem of
computing (theoretically or numerically) the autocovariance functions of the introduced models,
since these functions are used in estimation (see Section 4 below).
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3.1 VARFIMA(0, D, q) series

We begin with the case p = 0 (where there is no AR part). Define the general phase
VARFIMA(0, D, q) series (two-sided VARFIMA(0, D, q) series) as

Yn = ∆c(B)−1Θ(B)Zn, (3.1)

where ∆c(B)−1 is the operator given by (1.7) and

Θ(B) = I + Θ1B + . . .+ ΘqB
q (3.2)

is a matrix polynomial with 2 × 2 real-valued matrices Θs = (θjk,s)j,k=1,2, s = 1, . . . , q. Here and

throughout, {Zn}n∈Z is a white noise series with EZnZ ′n = Σ = (σjk)j,k=1,2. Further conditions on
Θs, s = 1, . . . , q, will be discussed below.

In the next proposition, we compute the autocovariance function of the series in (3.1). Tsay
(2010) calculated the autocovariance function of the one-sided analogue of (3.1) using the properties
of the hypergeometric function. Our approach, which we find less cumbersome for the multivariate
case, is similar to the one used for the two-sided VARFIMA(0, D, 0) series in Proposition 5.1 of
Kechagias and Pipiras (2015).

Proposition 3.1 The (j, k) component γjk(n) of the autocovariance matrix function γ(n) of the
bivariate two-sided VARFIMA(0, D, q) series in (3.1) is given by

γjk(n) =
1

2π

2∑
u,v=1

q∑
s,t=0

θju,sθkv,tσuv

(
a1,jkγ

(1)
st,jk(n) + a2,jγ

(2)
st,jk(n) + γ

(3)
st,jk(n) + a4,kγ

(4)
st,jk(n)

)
, (3.3)

where Θs = (θjk,s)j,k=1,2,s=1,...,q, Σ = (σjk)j,k=1,2,

a1,jk = c2(−1)j+k, a2,j = c(−1)j+1, a4,k = c(−1)k+1, (3.4)

and
γ

(1)
st,jk(n) = γ

(3)
st,kj(n) = 2Γ(1− dj − dk) sin(πdk)

Γ(n+t−s+dk)
Γ(n+t−s+1−dj) ,

γ
(4)
st,jk(n) = γ

(2)
ts,jk(−n) =

{
2π 1

Γ(dj+dk)
Γ(dj+dk+n+t−s)

Γ(1+n+t−s) , n ≥ s− t,
0 , n < s− t.

(3.5)

Proof: By using Theorem 11.8.3 in Brockwell and Davis (2009), the VARFIMA(0, D, q) series
in (3.1) has a spectral density matrix

f(λ) =
1

2π
G(λ)ΣG(λ)∗, (3.6)

where G(λ) = ∆c(e
−iλ)−1Θ(e−iλ). The (j, k) component of the spectral density is given by

fjk(λ) =
1

2π

2∑
u,v=1

q∑
s,t=0

θju,sθkv,tσuve
−i(s−t)λ(f1,jk(λ) + f2,jk(λ) + f3,jk(λ) + f4,jk(λ)), (3.7)

where

f1,jk(λ) = a1,jk(1− eiλ)−dj (1− e−iλ)−dk , f2,jk(λ) = a2,j(1− eiλ)−(dj+dk),

f3,jk(λ) = (1− e−iλ)−dj (1− eiλ)−dk , f4,jk(λ) = a4,k(1− e−iλ)−(dj+dk).
(3.8)
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Consequently, the (j, k) component of the autocovariance matrix satisfies γjk(n) =∫ 2π
0 einλfjk(λ)dλ, which in view of the relations (3.7)–(3.8) implies (3.3)–(3.4) with

γ
(1)
st,jk(n) = γ

(3)
st,kj(n) =

∫ 2π

0
ei(n−s+t)λ(1− eiλ)−dj (1− e−iλ)−dkdλ,

γ
(2)
st,jk(n) =

∫ 2π

0
ei(n−s+t)λ(1− eiλ)−xjkdλ, γ

(4)
st,jk(n) =

∫ 2π

0
ei(n−s+t)λ(1− e−iλ)−xjkdλ,

where xjk = dj + dk. The relations (3.5) follow from the evaluation of the integrals above as in the
proof of Proposition 5.1 of Kechagias and Pipiras (2015). �

We conclude this section with comments on parameter identification and another model speci-
fication. Since Θ(e−iλ) ∼ I2 + Θ1 + . . .+ Θq as λ→ 0, and since the relation (2.1) in Proposition
2.1 and the relation (2.18) in Proposition 2.2 do not involve Σ, the two-sided VARFIMA(0, D, q)
model has a general phase at the zero frequency (with the same relations (2.1) and (2.18) between
the phase φ and the parameter c). This also means that the filter ∆c(B)−1 can be identified at the
zero frequency, assuming either |c| < 1 or |c| > 1 when d1, d2 ∈ (0, 1/2) (and without this assump-
tion when one of the d’s is zero). Under the latter assumption, the filter ∆c(B) can be applied
to the VARFIMA(0, D, q) series to get a VARMA(0, q) series without fractional integration. In
particular, the parameters of Θ’s are identifiable if and only if they are identifiable for the same
VARMA(0, q) model. For the latter, working with parameters associated with invertible models
(e.g. Brockwell and Davis (2009)) is natural and we use them here, including in simulations. We
expect the VARFIMA(0, D, q) models to be different across |c| < 1 and |c| > 1 as well but currently
do not have a proof of this conjecture.

Another way to define a VARFIMA(0, D, q) series is to set Yn = Θ(B)∆c(B)−1Zn. This is a
different model from (3.1) since Θ(B) and ∆c(B)−1 do not necessarily commute. Furthermore, by
writing this model as Θ(B)−1Yn = ∆c(B)−1Zn, it can be thought to allow for a form of fractional
cointegration, in that a linear combination Θ(B)−1Yn of present and past observations of the two
component series could reduce the memory. Fractional cointegration is modeled more directly in
Section 3.3 below, and we shall work with a VARFIMA(0, D, q) model defined by (3.1).

3.2 VARFIMA(p,D, q) series

We extend here the model (3.1) to a general phase fractionally integrated model containing both
autoregressive and moving average components. As for the one-sided model (1.2), two possibilities
can be considered for this extension. Let Φ(B) = I − Φ1B − . . . − ΦpB

p be the AR polynomial,
where Φr = (φjk,r)j,k=1,2, r = 1, . . . , p, are 2× 2 real-valued matrices. Further assumptions on Φr,

r = 1, . . . , p, are discussed below. Following the terminology of Sela and Hurvich (2009), define the
general phase VARFIMA(p,D, q) series (two-sided VARFIMA(p,D, q) series) {Xn}n∈Z as

Φ(B)Xn = ∆c(B)−1Θ(B)Zn, (3.9)

and the general-phase FIVARMA(p,D, q) series3 (two-sided FIVARMA(p,D, q) series) as

Φ(B)∆c(B)Xn = Θ(B)Zn. (3.10)

3The names VARFIMA and FIVARMA refer to the facts that the fractional integration (FI) operator ∆c(B)−1

is applied to the MA part in (3.9), and after writing Xn = ∆c(B)−1Φ(B)−1Θ(B)Zn, it is applied to the VARMA
series in (3.10).
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The one-sided FIVARMA(p,D, q) series (with c = 0 in (3.10)) have been more popular in the
literature, with Lobato (1997), Sela and Hurvich (2009) and Tsay (2010) being notable exceptions.
In particular, Sela and Hurvich (2009) investigated thoroughly the differences between the one-sided
analogues of the models (3.9) and (3.10), focusing on models with no MA part.

We shall focus on and work with the two-sided VARFIMA(p,D, q) model (3.9). The following
discussion explains this choice and also makes other important points. By using the reparametriza-
tions of Dufour and Pelletier (2014), the FIVARMA model (3.10) can, in fact, take the VARFIMA
model form (3.9) with diagonal Φ(B). Indeed, write first the model (3.10) as

∆c(B)Xn = Φ(B)−1Θ(B)Zn.

Next, by using the relation Φ(B)−1 = |Φ(B)|−1adj(Φ(B)), where | · | and adj(·) denote the deter-
minant and adjoint of a matrix, respectively, we can write

∆c(B)|Φ(B)|Xn = adj(Φ(B))Θ(B)Zn, (3.11)

where the commutation of ∆c(B) and |Φ(B)| is possible since |Φ(B)| is scalar-valued. Letting
Φ̃(B) = diag(|Φ(B)|) and Θ̃(B) = adj(Φ(B))Θ(B), the relation (3.11) yields

∆c(B)Φ̃(B)Xn = Θ̃(B)Zn. (3.12)

Thus, a FIVARMA model with AR component of order p can indeed be written as a VARFIMA
model with a diagonal AR part whose order will not exceed 2p (the maximum possible order of
|Φ(B)|).

When the VARFIMA(p,D, q) series (3.9) has a diagonal AR part, in which case the two
models (3.9) and (3.10) are equivalent, the resulting model is identifiable in the following sense.
As in the discussion for the VARFIMA(0, D, q) model in the preceding section, such two-sided
VARFIMA(p,D, q) model has a general phase, assuming either |c| < 1 or |c| > 1 for d1, d2 ∈ (0, 1/2).
Furthermore, its other parameters (than D and c) are similarly identifiable if and only if they are
identifiable for the same VARMA(p, q) model. Conditions for the latter were studied recently
in Dufour and Pelletier (2014). The latter essentially just require stable AR and invertible MA
polynomials, which we also consider here, including in simulations.

We shall be using the VARFIMA(p,D, q) series with non-diagonal AR parts as well but the
following caveats should be kept in mind. We currently do not have results on parameter iden-
tifiability for these models. Identifiability and constrained estimation are quite delicate even for
general VARMA(p, q) models; see Dufour and Pelletier (2014), Roy et al. (2014). As with the other
possible VARFIMA(0, D, q) specification discussed at the end of Section 3.1, the model (3.9) with
non-diagonal AR component also allows for a form of fractional cointegration, and thus it should
be interpreted with caution. We generally prefer to model fractional cointegration explicitly as
discussed in Section 3.3 below.

Finally, another reason for using the VARFIMA(p,D, q) series (3.9) is that the autocovariance
function of its right-hand side can be computed explicitly as in Proposition 3.1; this will be useful in
estimation in Section 4. Computing the autocovariance function of the series itself is complicated
by the presence of the AR filter on the left-hand side of (3.9). Closed form formulas for the
autocovariance function of the one-sided model (3.10) with c = 0 were provided by Sowell (1986),
albeit his implementation is computationally inefficient as it requires multiple expensive evaluations
of hypergeometric functions. The slow performance of Sowell’s approach was also noted by Sela
(2010), who proposed fast approximate algorithms for calculating the autocovariance functions of
the one-sided models (3.9) and (3.10) with c = 0 when p = 1 and q = 0. Although not exact,
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Sela’s algorithms are fast with negligible approximation errors. In fact, it is straightforward to
extend these algorithms to calculate the autocovariance function of a two-sided VARFIMA(1, D, q)
series. For models with AR components of higher orders, however, this extension seems to require
restrictive assumptions on the AR coefficients and therefore we do not pursue this approach.

3.3 Fractionally cointegrated VARFIMA(p,D, q) series

For a bivariate LRD series Xn = (X1,n, X2,n)′, fractional cointegration refers to the situation when
there is a linear combination X1,n − αX2,n (α 6= 0) having shorter memory than the individual
component series. In fact, this is possible only when the component series have the same long-
range dependence parameter. The possibility of fractional cointegration can be incorporated easily
into a model as follows, similarly to Sela and Hurvich (2009), Robinson (2008). A general phase
VARFIMA(p,D, q) model with fractional cointegration is defined as

Φ(B)AXn = ∆c(B)−1Θ(B)Zn, (3.13)

where

A =

(
1 −α
0 1

)
(3.14)

and the rest of the model parameters are as in (3.9) but supposing d1 < d2. That is, the first row of
the matrix A when applied to Xn, plays the role of a possible fractional cointegration and d1 < d2

is assumed to have shorter memory for the first component of AXn after cointegration. The model
(3.13)–(3.14) is fractionally cointegrated only when α 6= 0. In practice, the model is fitted without
the restriction α 6= 0 and the results suggest fractional cointegration if the confidence interval for
α does not include zero. We also note that some models of bivariate fractional cointegration would
allow for the two component series to have different long-range dependence parameters (Johansen
(2008), Johansen and Nielsen (2012)). In this case, cointegration would be “trivial” in that a
cointegrating vector would select just the component series with the smaller long-range dependence
parameter. The “trivial” cointegration effectively amounts to having α = 0 in the model (3.13)–
(3.14).

Note that the cointegrated model (3.13) has the same structure as the model (3.9), with Φ(B)
replaced by Φ(B)A. A number of subsequent developments, in particular, related to estimation
and forecasting, can be adapted straightforwardly when Φ(B) is replaced by Φ(B)A. For shortness
sake, these will be written for Φ(B) and non-cointegrated models only.

4 Estimation and other tasks

In this section, we discuss estimation of the general phase VARFIMA(p,D, q) model (3.9) introduced
in Section 3.2. (Cointegrated models can be treated similarly as noted in Section 3.3.) Knowledge
of the explicit form of the autocovariance function (3.3), allows us to obtain parameter estimates
via conditional maximum likelihood (CML) estimation. The major computational task in the CML
computation is the Cholesky factorization of the model covariance matrix, which we found to be
stable and efficient for small and moderate sample sizes.

4.1 Estimation

We start with some notation. Let {Yn}n=1,...,N be the two-sided VARFIMA(0, D, q) series (3.1)
and let Γ(k) = EYkY ′0 denote its autocovariance function. Let also Θ = (vec(Θ1)′, . . . , vec(Θq)

′)′ be
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the vector containing the entries of the coefficient matrices of the MA polynomial Θ(B). Assuming
that the bivariate white noise series {Zn} is Gaussian, and letting η = (d1, d2, c, σ11, σ12, σ22,Θ

′)′ be
the (6 + 4q)–dimensional vector containing all the parameters of the model (3.1), the log-likelihood
function of {Yn}n=1,...,N is given by

`(η|Y ) = −1

2
log |Ω(η)| − 1

2
Y ′Ω(η)−1Y, (4.1)

where Ω(η) is the 2N×2N covariance matrix of {Yn}n=1,...,N . The matrix Ω(η) is populated by the
2×2 autocovariance matrices Γ(k), k = −(N−1), . . . , N−1, in a Toeplitz fashion, that is, the (i, j)th
2× 2 block matrix entry of Ω(η) is Γ(j− i). Instead of Ω(η), one can also work with the covariance
matrix Ω̃(η) = E(YY′) of the stacked component series Y = {Y1,1, . . . , Y1,N , Y2,1, . . . , Y2,N}. The
latter is used in the SAS/IML numerical implementation of the likelihood.

Using the fact that the series {Yn}n=1,...,N satisfies the relation

Φ(B)Xn = Yn, (4.2)

where {Xn}n=1,...,N is the two-sided VARFIMA(p,D, q) series (3.9), we can view
{Φ(B)Xn}n=p+1,...,N as a two-sided VARFIMA(0, D, q) series, whose log-likelihood function
conditional on X1, . . . , Xp and Φ = (vec(Φ1)′, . . . , vec(Φp)

′)′ is given by

`(Φ, η;Xn|X1, . . . , Xp) ≡ `(η; Φ(B)Xn), n = p+ 1, . . . , N. (4.3)

The reason we do not absorb Φ in η, is to emphasize the different roles that these two parameters
have in calculating the likelihood function in (4.3). More specifically, Φ is used to transform
the available data {Xn}n=1,...,N, to a two-sided VARFIMA(0, D, q) series {Yn}n=1,...,N, while η is
necessary to apply the for the covariance matrix.

The conditional likelihood estimators of Φ and η are then given by

(Φ̂, η̂) = argmax
Φ,η∈S

`(Φ, η;Xn|X1, . . . , Xp), (4.4)

where S = {η ∈ R6+4q : −ε < d1, d2 < 0.5, |Σ| = σ11σ22 − σ2
12 > 0, (σjj)j=1,2 ≥ 0} denotes the

parameter space for η with some small ε > 0, e.g. ε = 0.01. Although there is no closed form
solution for the estimates Φ̂ and η̂, they can be computed numerically using the quasi-Newton
algorithm of Broyden, Fletcher, Goldfarb, and Shanno (BFGS).

Theoretical properties of these estimators remain to be studied. Gaussian ML estimation
for multivariate LRD series was studied theoretically by Hosoya (1996) but for models expressed
through one-sided linear representations. As with many Gaussian likelihood methods, note that
the model itself does not need to be Gaussian. The results should be extended to two-sided models,
or alternatively, one-sided representations of the models considered here should be established. On
the other hand, some insight might be gained (and certainly reflected in our simulations) from
the theoretical analysis of local Whittle estimators in Robinson (2008), Baek et al. (2019). For
example, these works suggest that the phase parameter might be the most difficult one to estimate,
especially when cross correlation is “weak.”

4.2 Forecasting

To compute forecasts and corresponding error, we use the multivariate Durbin-Levisnon (DL, for
short) algorithm (see Brockwell and Davis (2009), p. 422). Given the parameter estimates, the DL
algorithm yields the coefficients matrices Φn,1, . . . ,Φn,n in the 1–step-ahead forecast (predictor)

Ŷn+1 := Ŷn+1|n := E(Yn+1|Y1, . . . , Yn) = Φn,1Yn + . . .+ Φn,nY1, (4.5)
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as well as the associated forecast error matrix Vn = E(Yn+1−Ŷn+1)(Yn+1−Ŷn+1)′. The h–step-ahead
forecasts, h ≥ 1, on the other hand, are given by

Ŷn+h|n := E(Yn+h|Y1, . . . , Yn) = F hn,1Yn + . . .+ F hn,nY1, (4.6)

where F hn,k, k = 1, . . . , n, are 2× 2 real-valued coefficient matrices, with the corresponding forecast
error matrix

Wn+h−1|n = E(Yn+h − Ŷn+h|n)(Yn+h − Ŷn+h|n)′. (4.7)

The 1-step-ahead forecasts can be used recursively by repeated conditioning to obtain recursive
expressions for the coefficient matrices F hh,k and an expression for the error matrix Wn+h−1|n, as
stated in the next result. The standard proof is omitted for shortness sake.

Proposition 4.1 Let h ≥ 1 and Φn,k, n ≥ 1, k = 1, . . . , n, be as above. Then, the matrices F hn,k
in (4.6) satisfy the recursive relation

F hn,k = Φn+h−1,h+k−1 +

h−1∑
j=1

Φn+h−1,jF
h−j
n,k , (4.8)

with F 1
n,k := Φn,k, n ≥ 1, k = 1, . . . , n. Moreover, the corresponding error matrices Wn+h−1|n in

relation (4.7), are given by

Wn+h−1|n = Γ(0)−
n∑
j=1

F hn,jΓ(h+ j − 1)′, (4.9)

where Γ(n) = EYnY ′0 is the autocovariance matrix function of {Yn}n∈Z.

Remark 4.1 In the time series literature (e.g. Brockwell and Davis (2009)), it is more succinct
and common to express the h–step-ahead forecasts by using the coefficient matrices appearing in
the multivariate Innovations (IN, for short) algorithm. We use the DL algorithm since it is faster
than the IN algorithm: the coefficient matrices Φn,k in (4.5) are computed in O(n2) number of
steps, whereas the computational complexity for the analogous coefficients in the IN algorithm is
O(n3). Note also that the log-likelihood function (4.1) can be rewritten as

(2π)−N
(N−1∏
j=0

Vj

)−1/2
exp

{
− 1

2

N−1∑
j=0

(Yj+1 − Ŷj+1)′V −1
j (Yj+1 − Ŷj+1)

}
(4.10)

(see relation (11.5.4) in Brockwell and Davis (2009)), and thus likelihood calculations can be carried
out using the DL algorithm in a similar fashion with Tsay’s (2010) approach. Despite the lower
computational complexity DL offers through (4.10), compared to Cholesky decomposition required
for (4.1), we found the latter to be faster for small and moderate sample sizes.

The DL algorithm used in the forecasting procedure and formulae above is based on the assump-
tion that the autocovariance function of the time series {Yn}n∈Z can readily be computed, as for
example for the two-sided VARFIMA(0, D, q) series. We now turn our attention to the two-sided
VARFIMA(p,D, q) series {Xn}n∈Z defined through {Yn}n∈Z in (4.2). As we do not have an explicit
form of the autocovariance function of {Xn}n∈Z, it is not immediately clear how to calculate the
h–step-ahead forecasts

X̂n+h|n = E(Xn+h|X1, . . . , Xn)
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and the corresponding error matrices

W̃n+h−1|n = E(Xn+h − X̂n+h|n)(Xn+h − X̂n+h|n)′,

n ≥ 1, h ≥ 1. In Proposition 4.2 below, we show that X̂n+h|n and W̃n+h−1|n can be calculated

approximately and recursively from Ŷn+h|n and Wn+h−1|n. For simplicity and since this order will
be used in the simulations and the application below, we focus on the case p = 1. However, the
proposition can be extended for larger values of p.

Proposition 4.2 Let F hn,k, n ≥ 1, k = 1, . . . , n, be as in (4.6). Then, the h–step-ahead forecasts

X̂n+h|n = E(Xn+h|X1, . . . , Xn) satisfy

X̂n+h|n = X̂
(a)
n+h|n +Rn+h|n, (4.11)

where

X̂
(a)
n+h|n = Φh

1Xn +

h−1∑
s=0

Φs
1Ŷn+h−s|n, (4.12)

Rn+h|n =
h−1∑
s=0

Φs
1

(
E(Yn+h−s|X1, . . . , Xn)− E(Yn+h−s|Y1, . . . , Yn)

)
. (4.13)

Moreover, the error matrices W̃
(a)
n+h−1|n = E(Xn+h − X̂

(a)
n+h|n)(Xn+h − X̂

(a)
n+h|n)′ can be computed by

W̃
(a)
n+h−1|n =

h−1∑
s=0

Φs
1Wn+h−s−1|n(Φs

1)′ +
h−1∑
s,t=0
s 6=t

Φs
1As,t(n+ h)(Φt

1)′, (4.14)

where

As,t(n+ h) = Γ(t− s)−
n∑
k=1

Γ(h− s+ k − 1)(F h−tn,k )′ (4.15)

and Γ(n) = EYnY ′0 is the autocovariance matrix function of {Yn}n∈Z.

Proof: By using the relation (4.2) recursively, we can write

Xn+h = Φh
1Xn +

h−1∑
s=0

Φs
1Yn+h−s, h = 1, 2, . . . (4.16)

which implies that

X̂n+h|n = Φh
1Xn +

h−1∑
s=0

Φs
1E(Yn+h−s|X1, . . . , Xn). (4.17)

Since E(Yn+h−s|Y1, . . . , YN ) = Ŷn+h−s|n, the relation (4.17) yields (4.12).
Next, we subtract (4.12) from (4.16) to get

Xn+h − X̂
(a)
n+h|n =

h−1∑
s=0

Φs(Yn+h−s − Ŷn+h−s|n).
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The h–step-ahead error matrix W̃
(a)
n+h−1|n is then given by

W̃
(a)
n+h−1|n = E

( h−1∑
s=0

Φs
1(Yn+h−s − Ŷn+h−s|n)

)( h−1∑
t=0

Φt
1(Yn+h−t − Ŷn+h−t|n)

)′
=

h−1∑
s=0

Φs
1Wn+h−s−1|n(Φs

1)′ +

h−1∑
s,t=0
s 6=t

Φs
1As,t(n+ h)(Φt

1)′, (4.18)

where As,t(u) = E(Yu−s − Ŷu−s|n)(Yu−t − Ŷu−t|n)′. To show that As,t(u) satisfies (4.15), note that
for s, t = 0, . . . , u− n− 1, s 6= t, we have

EŶu−s|nY ′u−t = E(E(Ŷu−s|nY
′
u−t|Y1, . . . , YN )) = EŶu−s|nE(Yu−t|Y1, . . . , YN ) = EŶu−s|nŶ ′u−t|n.

Hence,

As,t(u) = EYu−sY ′u−t − EYu−sŶ ′u−t|n − EŶu−s|nY ′u−t + EŶu−s|nŶ ′u−t|n
= Γ(t− s)− EYu−sŶ ′u−t|n

= Γ(t− s)− EYu−s
( n∑
k=1

F u−t−nn,k Yn−k+1

)′
= Γ(t− s)−

n∑
k=1

Γ(u− s− n+ k − 1)(F u−t−nn,k )′, (4.19)

yielding the relations (4.14)–(4.15). �

Since Xn − Φ1Xn−1 = Yn for the VARFIMA(1, D, q) series {Xn} and the VARFIMA(0, D, q)
series {Yn}, the approximation error Rn+h|n in (4.13) becomes negligible for large n. For this reason,

in the simulations and the application below, we shall use the approximate forecasts X̂
(a)
n+h|n in (4.11)

and their forecast error matrices W̃
(a)
n+h−1|n given by (4.14).

5 Simulation study

In this section, we perform a Monte Carlo simulation study to assess the performance of the CML
estimation approach for the models (3.9) and (3.13)–(3.14) described in Section 3. We examine four
different models with AR and MA components of orders p, q = 0, 1, as well as a fifth fractionally
cointegrated (1, D, 0) model. For the (1, D, 0) models, we shall consider a non-diagonal AR matrix.
Though this should be treated with some caution in connection to identifiability as noted in Section
3.2, we sought to see what happens when the AR part is non-diagonal as well. The results for
(1, D, 0) models with diagonal AR parts (not reported here) were qualitatively similar or better.
For each model, we consider three sample sizes N = 200, 400, 1000. The Gaussian time series data
are generated using the fast and exact synthesis algorithm of Helgason et al. (2011), while the
number of replications is 5000.

To solve the maximization problem (4.4), we use the SAS/IML nlpqn function, which im-
plements the BFGS quasi-Newton method, a popular iterative optimization algorithm. For our
optimization scheme, we follow the approach found in Tsay (2010). A first step is to eliminate
the nonlinear inequality constraint |Σ| ≥ 0 in the parameter space S defined in Section 4.1, by
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letting Σ = U ′U , where U = (Ujk)j,k=1,2 is an upper triangular matrix. Then, the parameter
vector θ can be written as θ = (d1, d2, c, U11, U12, U22,Θ

′)′ while the parameter space becomes
S = {θ ∈ R6+4q : −ε < d1, d2 < 0.5}, for some small positive ε (we considered ε = 0.01).

Next, we describe our strategy on selecting initial parameter values (ΦI , θI) for the BFGS
method. Let

Φ0
1 = (φ0

jk,1)j,k=1,2, θ0 = (d0
1, d

0
2, c

0, U 0
11, U

0
12, U

0
22, (Θ

0
1)′)′, (5.1)

where Θ0
1 = (θ0jk,1)j,k=1,2, be the true parameter values. We consider initial values

dIk =
2d0

k

1 + 2d0
k

, cI =
2c0

1 + |c0|
, U I

jk = 1, θIjk,1 =
eθ

0
jk,1 − 1

eθ
0
jk,1 + 1

, φIjk,1 =
eφ

0
jk,1 − 1

eφ
0
jk,1 + 1

, (5.2)

where j, k = 1, 2. Note that the transformations of the LRD parameters in (5.2) are essentially
perturbations of the true parameter values that also retain the range of the parameter space S. For
example, the value of dIk will be zero (or 1/2) when d0

k is also zero (or 1/2). The choice cI is also
a perturbed version of c that satisfies |cI | < 1 when the true parameter c is located in the interval
(−1, 1). Moreover, even though the parameter space S does not include identifiability (including
stability) constraints for the elements of the AR and MA polynomials as discussed in Section 3.2,
we did not encounter any cases where the optimization algorithm considers such values.

In a practical scenario, when the true parameter values are unknown, initial estimates can be
obtained as follows. One can follow the semiparametric approach of Robinson (2008) to obtain the
local Whittle estimates of the parameters d1, d2, φ, ω11, ω12, ω22, and subsequently use the relation
(2.1) to get an estimate of c. For diagonal AR matrices, one can then apply the fractional filter to the
data (see Jensen and Nielsen (2014) for a fast fractional differencing algorithm) and use techniques
from the VARMA literature (e.g. least squares) to obtain estimates for short memory parameters in
a quick manner. In addition to fast computation of initial estimates, this methodology allows one
to identify possible weak cross-spectra in the form of small values for the ratio ω̂2

12/(ω̂11ω̂22). In the
latter case, recalling the discussion under relation (2.16), the values c and 1/c lead to similar models
and the optimization algorithm may converge to a local maxima around 1/c (with the values of U
accordingly rescaled). We encountered this behavior in simulation schemes with weak cross-spectra
in the form of bimodality for ĉ and the entries of Û . A simple, yet effective strategy to deal with
this issue is to refit the model a second time, using the initial value cI = 1/ĉ where ĉ is the estimate
from the first fit, and analogously transform the initial estimates for U . Then, for the two fitted
models, the one with the larger likelihood value is selected.

Table 1 and Figure 2 present estimation results for the five models considered. To save space,
we present the cointegrated (1, D, 0) model in Figure 2 and the non-cointegrated (1, D, 0) model in
Table 1. For all models without MA components, we take (dropping the superscript 0 for simplicity)
d1 = 0.2, d2 = 0.4, c = 0.6, Σ11 = 3, Σ12 = 2, Σ22 = 3, and wherever present, Φ11 = φ11,1 = 0.5,
Φ12 = φ12,1 = 0.2, Φ21 = φ21,1 = 0.4, Φ22 = φ22,1 = −0.8, α = 0.5.4 In models with MA
components we take the same d’s and c = 0.2, Σ11 = 3, Σ12 = 1.5, Σ22 = 3, Θ11 = θ11,1 = 0.7,
Θ12 = θ12,1 = −0.1, Θ21 = θ21,1 = 0.2, Θ22 = θ22,1 = 0.4. We also performed simulations for several
other values of these parameters with similar results and therefore we omit them in favor of space
economy.

Table 1 lists the median differences between the estimates and the corresponding true values,
and the respective median absolute deviations. Figure 2, on the other hand, includes the boxplots
of the estimates for the various parameters. The true parameter values are marked in dashed blue

4For this choice of d1, d2, c, the phase parameter is equal to φ = −1.15. Taking c = −0.1985 with the same d’s
would yield zero phase.
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lines. Moreover, the boxplots of Û11, Û12 and Û22 are centered at zero by subtracting the true
parameter value, providing a uniform presentation scale. While the table concerns only the results
for the sample sizes N = 200 and 400, the figure also includes the case of N = 1000.

(p, q) (0, 0) (0, 1) (1, 0) (1, 1)

N 200 400 200 400 200 400 200 400

d1
−0.007 −0.002 −0.009 −0.004 −0.019 −0.019 −0.029 −0.014
0.036 0.026 0.043 0.029 0.062 0.061 0.097 0.068

d2
−0.008 −0.004 −0.011 −0.004 −0.005 −0.005 −0.005 −0.002
0.036 0.026 0.040 0.031 0.028 0.027 0.038 0.028

c
0.010 0.005 0.017 0.008 0.010 0.009 0.001 −0.003
0.047 0.034 0.108 0.076 0.043 0.046 0.059 0.043

Φ11/Θ11
0.010 0.004 0.017 0.016 0.016/0.032 0.005/0.022
0.048 0.033 0.059 0.060 0.111/0.080 0.081/0.057

Φ12/Θ12
0.007 0.003 −0.012 −0.015 −0.012 −0.010
0.058 0.041 0.072 0.074 0.044 0.029

Φ21/Θ21
0.004 0.002 −0.001 0.000 0.020 0.001
0.051 0.037 0.016 0.016 0.102 0.073

Φ22/Θ22
0.006 0.005 −0.002 −0.001 0.011/−0.001 0.008/−0.002
0.058 0.04 0.017 0.017 0.032/0.039 0.024/0.026

U11
−0.017 −0.009 −0.038 −0.016 −0.019 −0.019 −0.028 −0.015
0.075 0.054 0.154 0.111 0.065 0.065 0.086 0.064

U12
0.022 0.015 0.016 0.007 0.022 0.010 −0.001 −0.006
0.120 0.086 0.130 0.091 0.104 0.098 0.140 0.101

U22
0.010 0.009 0.005 −0.001 0.012 0.005 −0.012 −0.008
0.112 0.080 0.150 0.107 0.087 0.091 0.110 0.083

Table 1: Median differences between the estimates and the corresponding true values (top value in each

cell) and median absolute deviations (bottom value in each cell) for the estimated parameters of VARFIMA

series with (p, q) = (0, 0), (0, 1), non-cointegrated (1, 0) and (1, 1).

The results in Table 1 and Figure 2 indicate a satisfactory performance of the CML approach
for all cases considered: the median differences are small overall and tend to decrease with the
increasing sample size, and the decrease with the increasing sample size is also evident for the
median deviations; moreover, many median deviations and box sizes are relatively small as well.
The cases we show here have relatively strong cross-spectra and the optimization algorithm had
no trouble finding the global maximum. We also considered two weak cross-spectra scenarios: a
two-sided (0, D, 0) model with parameters d1 = 0.2 d2 = 0.4, c = 0.6, Σ11 = 3, Σ12 = 0.5 Σ22 = 3
and a two-sided (0, D, 1) model with the same d’s, c, Σ and Θ11 = θ11,1 = 0.7, Θ12 = θ12,1 = −0.1,
Θ21 = θ21,1 = 0.2, Θ22 = θ22,1 = 0.4. The models for these sets of parameters have small variance
ratios γ12(0)2/(γ11(0)γ22(0)) (0.004 and 0.034 respectively) which similarly to ω2

12/(ω11ω22) can
be viewed as measures of cross-dependence between the series (however without focusing on low
frequencies as the spectral ratio does). In this case, the optimization algorithm produced bimodal
estimates with small differences in likelihood values. After employing the “refit” strategy described
above, however, we successfully estimated the true models and obtained similar results with those
in Table 1 and Figure 2.

Finally, we also comment on the model selection task concerning the one- and two-sided models
when using BIC and AIC. Figure 3, the left plot, presents the proportion of times that these informa-
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Figure 2: The red solid lines are the medians and the blue dashed lines are the true parameter values (except

for U11, U12, U22 which are centered at 0).Top to bottom: (p, q) = (0, 0), (0, 1), cointegrated (1, 0) and (1, 1).

Left to right: N = 200, 400, 1000.
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tion criteria select the one-sided VARFIMA(0, D, 0) model over the two-sided VARFIMA(0, D, 0),
when in fact the latter model is true, for the same parameter values as in Table 1 in the case
p = q = 0. The right plot of the figure presents the analogous plot for a different set of values of
the parameters d1, d2 and c. The performance of the model selection criteria is satisfactory overall.
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Figure 3: The proportion of times that the considered information criteria select the one-sided
VARFIMA(0, D, 0) model over the two-sided one, when the latter is true.

6 Application

In this section, we apply the estimation techniques discussed in Section 4.1 to analyze inflation
rates in the U.S. under the two-sided, possibly cointegrated, VARFIMA(p,D, q) models discussed
in Section 3. Models with both |c| < 1 and |c| > 1 will be fitted. Long-range dependence in
inflation rates has been reported and studied in a number of works (see, for example, Baillie et
al. (1996), Doornik and Ooms (2004), Sela and Hurvich (2009), Baillie and Morana (2012) and
references therein), and might also be expected due to aggregation effects (Granger (1980)). More
specifically, Sela and Hurvich (2009) tested the fit of several long- and short-range dependent models
on the annualized monthly inflation rates for goods and services in the U.S. during the period of
February 1956–January 2008 (N = 624 months) and selected a one-sided VARFIMA model as
the best choice. Besides their long memory features, however, the time series of inflation rates
often exhibit asymmetric behavior, and therefore call for multivariate LRD models that allow for
a general phase.

Following the notation of Sela (2010),5 we denote the Consumer Price Indices series for com-
modities as {CPIcn}n=0,...,N and the corresponding series for services as {CPIsn}n=0,...,N . Then, we
define the annualized monthly inflation rates for goods and services as

gn = 1200
CPIcn − CPIcn−1

CPIcn−1

and sn = 1200
CPIst − CPIsn−1

CPIsn−1

,

respectively. The two series {gn}n=1,...,N , {sn}n=1,...,N are depicted in Figure 4.6

The two plots in Figure 5 provide some motivation for why a general phase model is needed for
this dataset. More specifically, the left plot in Figure 5 depicts the sample cross-correlation function

5See also the accompanying R code.
6The consumer price indices (raw) data are available online from the Bureau of Labor Statistics.
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Figure 4: Annualized monthly inflation rates for goods (left) and services (right) from February
1956 to January 2008.

ρ̂12(h) of the two series for all lags such that |h| < 25. Observe that for negative lags the sample
cross-correlation function decays faster than for positive lags suggesting time-non-reversibility of
the series and hence non-zero phase.
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Figure 5: Left plot: Sample cross-correlation ρ̂12(h) of the series {gn}n=1,...,N and {sn}n=1,...,N

depicted in Figure 4 for |h| ≤ 25. Right plot: Local Whittle phase estimates, one corresponding to
the one-sided VARFIMA (dashed line) and one estimated directly from the data (solid line). Both
estimates are plotted as functions of a tuning parameter m = N0.25+0.0125k, k = 1, . . . , 51, where
N = 624 is the sample size of the series.

Further evidence for general phase can be obtained from the local Whittle estimation of Robin-
son (2008) which can be used to estimate the phase and the LRD parameters directly from the
data. The estimation is semiparametric in the sense that it only requires specification of the spec-
tral density at low frequencies. The right plot in Figure 5 is a local Whittle plot, depicting two local
Whittle estimates of the phase parameter φ as functions of m – a tuning parameter representing
the number of lower frequencies used in the estimation. The dashed line corresponds to the special
phase estimate φ̂ = (d̂1 − d̂2)π/2 of the one-sided VARFIMA model based on the local Whittle
estimates of the two d’s. On the other hand, the solid line shows the phase parameter estimated di-
rectly from the data. The two lines being visibly different suggest that the special phase parameter
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and the associated VARFIMA model are not appropriate. A more detailed local Whittle analysis
of the dataset can be found in Baek et al. (2019): it includes confidence intervals in local Whittle
plots and also the results under fractional cointegration.

In the analysis of Sela and Hurvich (2009), the one-sided VARFIMA(1, D, 0) model was selected
as the best choice (based on AIC), amongst vector autoregressive models of both low and high orders
and also amongst one-sided VARFIMA(p,D, 0) and FIVARMA(p,D, 0) models with p ≤ 1. The
estimated VARFIMA(1, D, 0) model, in particular, was

gn = 0.3027gn−1 + 0.4245sn−1 + ε1,n,
sn = −0.0237gn−1 − 0.3085sn−1 + ε2,n,

(6.1)

where (
ε1,n

(I −B)0.4835ε2,n

)
∼ N

(
0,

(
20.23 0.46
0.46 7.08

))
. (6.2)

We should note here that fitting the 1-sided model using the SAS/ETS VARMAX procedure pro-
duced estimates similar to those of Sela’s algorithm (implemented in R), for all parameters except d1

which Sela estimates to be zero while for this model we estimated it to be 0.191. More specifically,
the estimated one-sided VARFIMA(1, D, 0) model is

gn = 0.132 (0.064) gn−1 + 0.076 (0.080) sn−1 + ε1,n,
sn = 0.056 (0.023) gn−1 − 0.308 (0.044) sn−1 + ε2,n,

(6.3)

where (
(I −B)0.191 (0.052)ε1,n
(I −B)0.475 (0.062)ε2,n

)
∼ N

(
0,

(
20.21 0.75
0.75 7.02

))
(6.4)

and the underlying U in Σ = U ′U has U11 = 4.605 (0.131), U12 = 0.164 (0.109) and U22 =
2.645 (0.075), with standard errors of the estimates added in the parentheses throughout.

The parameter estimates in (6.1)–(6.2) reveal an interesting feature, noted by Sela (2010).
In particular, while the lagged services inflation has a significant influence on goods inflation, the
lagged goods inflation seems to have a small effect on services inflation. This behavior is potentially
related to the so-called gap between the prices in services and the prices in goods which was studied
by Peach et al. (2004). More specifically, the term gap refers to the tendency of prices in services
to increase faster than prices in goods. But note that this effect is not present in the estimated
model (6.3)–(6.4) and, in fact, is reversed.

For comparison, we present next two estimated two-sided VARFIMA(1, D, 0) models with and
without fractional cointegration. Moreover, we focus on diagonal AR components, in part to
avoid confusion with fractional cointegration as noted in Section 3.2. The estimated two-sided
non-cointegrated VARFIMA(1, D, 0) model is

gn = 0.106 (0.053) gn−1 + ε1,n,
sn = −0.439 (0.080) sn−1 + ε2,n,

(6.5)

where(
((I −B)−0.231 (0.043) + 0.344 (0.158)(I −B−1)−0.231)−1ε1,n

((I −B)−0.439 (0.044) − 0.344(I −B−1)−0.439)−1ε2,n

)
∼ N

(
0,

(
12.141 0.948
0.948 11.680

))
(6.6)
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and the corresponding U in Σ = U ′U has U11 = 3.484 (0.408), U12 = 0.272 (0.154) and U22 =
3.407 (0.471). On the other hand after expanding relation (3.13), we obtain the estimated two-
sided VARFIMA(1, D, 0) model with fractional cointegration as

gn = 0.146 (0.057) gn−1 + 1.11 (0.131) sn − 0.1621 sn−1 + ε1,n,
sn = −0.166 (0.043) sn−1 + ε2,n,

(6.7)

where(
((I −B)−0.021 (0.045) − 2.604 (1.219)(I −B−1)−0.021)−1ε1,n

((I −B)−0.483 (0.022) + 2.604(I −B−1)−0.483)−1ε2,n

)
∼ N

(
0,

(
10.65 1.415
1.415 0.645

))
(6.8)

and the corresponding U in Σ = U ′U has U11 = 3.263 (2.504), U12 = 0.433 (0.169) and U22 =
0.675 (0.241). Note, that in the first equation of (6.7), the coefficients of the terms gn−1, sn and
sn−1 correspond to φ̂11, â and âφ̂11 respectively.

We have a number of interesting observations related to the preceding fits. In terms of AIC,
listed from smallest to largest, the estimated models are (6.7)–(6.8), (6.3)–(6.4) and (6.5)–(6.6).
In terms of BIC, the models are (6.7)–(6.8), (6.5)–(6.6) and (6.3)–(6.4). We also fitted (0, D, 0)
models (both one- and two-sided) allowing for fractional cointegration. Both selection criteria
preferred two-sided models over their one-sided analogues with the sole exception of the BIC in
the non-cointegrated (1, D, 0) case. Additionally, all cointegrated models were selected over non-
cointegrated ones.

Finally, we mention that the degrees of dependence as well as the asymmetry behavior implied by
both fitted models (6.5)–(6.6) and (6.7)–(6.8), agree with the ones obtained by the semiparametric
approach of Baek et. al (2019). More specifically, a visual inspection of the local Whittle plots in
Figure 7 of Baek et. al (2019) yields approximate estimates d̂1,nc ≈ 0.23, d̂2,nc ≈ 0.42, φ̂nc ≈ −0.78

and d̂1,c ≈ 0.03, d̂2,c ≈ 0.45, φ̂c ≈ 0.5 for the non-cointegrated (nc) and cointegrated (c) cases
respectively. Plugging in the maximum likelihood estimates of d1, d2 and c from (6.7)–(6.8) into
the relation (2.9) yields the phase estimates φnc = −0.85, φc = 0.33.

7 Conclusions

In this work, we studied modeling approaches for bivariate stationary series exhibiting long-range
dependence that allow for general phase. The study was motivated by the fact that commonly
considered bivariate long-range dependent models could capture only a very special phase, and by
an inflation time series data that called for models beyond those with the special phase.

Several open questions related to our models were already raised in this work, including iden-
tifiability conditions (Sections 3.1 and 3.2), theoretical properties of the estimators (Section 4.1),
and the one-sided representations of the considered models (Section 1). A natural extension of this
work is to consider multivariate (that is, higher-order) long-range dependent series with general
phase. In fact, the authors have made an incursion into this extension in a conference paper in
Baek et al. (2017). But the models suggested in Baek et al. (2017) cannot be interpreted as nicely
as the models studied here, for example, they do not model phases through dedicated parameters.
Among all these lingering issues, discovering the forms of one-sided representations is probably the
most fundamental, as this might also suggest modeling approaches that go beyond those based on
covariance structures as in this work.
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