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This paper examines a bivariate count time series with some cu-
rious statistical features: Saffir-Simpson Category 3 and stronger an-
nual hurricane counts in the North Atlantic and Pacific Ocean Basins.
As land and ocean temperatures on our planet warm, an intense cli-
matological debate has arisen over whether hurricanes are becoming
more numerous, or whether the strengths of the individual storms
are increasing. Recent literature concludes that an increase in hurri-
cane counts occurred in the Atlantic Basin circa 1994. This increase
persisted through 2012; moreover, the 1994-2012 period was one of
relative inactivity in the Pacific Basin. When Atlantic activity eased
in 2013, heavy activity in the Pacific Basin commenced. When exam-
ined statistically, a Poisson white noise model for the annual severe
hurricane counts is difficult to resoundingly reject. Yet, decadal cy-
cles (longer term dependence) in the hurricane counts is plausible.
This paper takes a statistical look at the issue, developing a sta-
tionary multivariate count time series model with Poisson marginal
distributions and a flexible autocovariance structure. Our auto- and
cross-correlations can be negative and have long-range dependence,
features that most previous count models cannot achieve in tandem.
Our model is new in the literature and is based on categorizing and
super-positioning multivariate Gaussian time series. We derive the
autocovariance function of the model and propose a method to esti-
mate model parameters. In the end, we conclude that severe hurricane
counts are indeed negatively correlated across the two ocean basins.
Some evidence for long-range dependence is also presented; however,
with only a 49 year record, this issue cannot be definitively judged
without additional data.

1. Introduction. Hurricanes are nature’s way of equalizing global heat
imbalances. In the Northern Hemisphere, hurricanes form in the tropics and
move northward to the Arctic, carrying equatorial heat to the pole in an
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attempt to equalize global surface temperatures. Geophysicists often view
hurricanes, which require warm waters to form and thrive, as the Earth
sweating. As surface and ocean temperatures of the Earth warm, more equa-
torial heat will seemingly need to be dissipated. Accordingly, many scientists
believe that a warming Earth should experience more hurricanes and/or
stronger individual storms.

Scientific debate over increasing hurricane activity has been intense. The
popular science book by Mooney (2007) narrates the scientific mudslinging
and the stances taken by different “camps” on various issues, including link-
ing hurricane changes to global warming. The debate was exacerbated by an
increase in North Atlantic Basin hurricane activity circa the mid 1990s. At
this time, Atlantic activity was concluded to have increased by many authors
[Elsner, Jagger and Niu (2000); Goldenberg, Landsea and Mestas-Nunez
(2001); Elsner, Kossin and Jagger (2008); Robbins et al. (2011)]. Some
physicists [Goldenberg, Landsea and Mestas-Nunez (2001)] explained this
increase as part of a natural multi-decadal cycle, whereby hurricane counts
oscillate on decadal cycles. Their claim that Atlantic activity would return
to normal levels was based largely on physical models; past data were not
considered. Another camp, the empiricists, claimed that an era of increased
hurricane activity is here to stay, is largely attributed to climate change,
and is supported by the data record.

Around 2012, North Atlantic hurricane activity markedly decreased. How-
ever, at this time, activity in the Pacific Basin dramatically increased. In
2015, the Pacific Basin experienced ten severe hurricanes while the Atlantic
Basin had just two. This on/off negative correlation pattern has been per-
sistent since the mid 1960s, when reliable Atlantic and Pacific hurricane
records commenced (this is the time at which satellite surveillance began).
One objective of this paper is to investigate this negative dependence be-
tween the two annual basin counts. A long-range dependence cycle in the
basin counts is also statistically investigated.

Forecasting annual hurricane counts is difficult. Most forecasts of the
North Atlantic Basin’s activity a year in advance have little predictive power.
In fact, Atlantic Basin storm counts often pass Poisson white noise sta-
tistical tests, especially when only the strong storms are considered. This
said, some forecasting power can be achieved with covariates such as El-
Niño, Northwest African rainfall, etc. at a few months lead time [Gray
(1984); Elsner and Jagger (2006)]. Confirmation of negative correlation be-
tween basins or longer memory cycles in the individual basins should aid
annual storm count forecasting.

Poisson distributions are natural models for the annual severe hur-
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ricane counts due to their event-based interpretation. Indeed, many
authors have used Poisson or Poisson-based models [Mooley (1981);
Thompson and Guttorp (1986); Solow (1989); Parisi and Lund (2000);
McDonnell and Holbrook (2004); Xiao, Kottas and Sansó (2015)] to de-
scribe hurricane counts. This said, Poisson dynamics are not perfect: some
slight over-dispersion in the Pacific counts will be encountered. While
Chu and Zhao (2004) and Villarini, Vecchi and Smith (2010) and others
propose negative binomial marginals, which are over-dispersed, the amount
of over-dispersion in our data is minimal, as Section 3 shows. As such,
our work entails developing a bivariate stationary time series model with
marginal Poisson distributions for the annual storm counts. Extensions to
over-dispersed marginal count distributions will be addressed in our con-
cluding discussion.

Count time series modeling is an active current area of statistical re-
search [Davis et al. (2015)]. To describe the severe hurricane counts in both
basins simultaneously, a bivariate count time series model with Poisson
marginal distributions is needed — one that permits possible negative cross-
correlations at lag zero between the series and non-zero correlations at
decadal lags in each marginal series. Stationarity, the natural status quo
model, should be posited until it can be reliably discounted — essentially,
our null hypothesis is a non-changing hurricane climate. However, such a
model has proven difficult to devise so far. Section 4 remedies this issue.

The rest of the paper proceeds as follows. Section 2 presents a brief back-
ground on count time series models. Section 3 explores properties of the
bivariate hurricane count series. The construction of the bivariate Poisson
count model that allows for negative cross-correlations and long-range de-
pendence is undertaken in Section 4. Section 5 introduces a quasi-maximum
likelihood parameter estimation method for this model; its performance is
investigated in a short simulation study in Section 6. Section 7 fits the
proposed model to the hurricane data. Conclusions and future work are
summarized in Section 8.

2. Time Series Background.

2.1. Count time series. Count time series arise in the investigation of
natural phenomena such as rare disease occurrences, animal sightings, and
severe weather events. This subsection reviews several stationary discrete-
time models for multivariate count series.

In contrast to continuous multivariate observations, where vector autore-
gressive moving-average (VARMA) processes take a dominant role, no single
class of count time series models has emerged as the most flexible, parsimo-
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nious, and widely used [Fokianos and Kedem (2003); Davis et al. (2015)].
Many existing models cannot produce an arbitrary count marginal distri-
bution with negative auto- and cross-correlations, a feature present in our
hurricane counts. To handle this, a novel count time series model with posi-
tive or negative auto- and cross-correlations will be constructed in the next
section. Our model also allows for long-range dependence (LRD): the slow
autocorrelation decay in time exhibited in many real data sets.1

The most popular stationary count time series models are arguably the
integer autoregressive moving-average (INARMA) models introduced in
Steutel and Van Harn (1979) [see also Alzaid and Al-Osh (1990); McKenzie
(2003); Neal and Subba Rao (2006); Enciso-Mora, Neal and Subba Rao
(2009)]. INARMA models replace the scalar multiplication in continuous
ARMA models with thinning to keep the series integer-valued. The L-
dimensional first-order integer autoregressive (INAR(1)) series {Yt}, for
example, obeys the recursion

(2.1) Yt = α ◦Yt−1 + Zt.

Here, α is an L × L dimensional matrix whose entries αi,j all lie in [0, 1],
and {Zt} is L-dimensional IID count-valued noise. The symbol ◦ denotes
thinning and operates on a non-negative univariate integer-valued random
variable Y via p ◦ Y :=

∑Y
i=0Bi, where Bi are IID Bernoulli(p) variables.

Integer AR series of general order and integer ARMA series are defined in
some of the above references.

Many properties of ordinary ARMA models hold for INARMA models.
For example, a unique (in mean square) causal stationary solution to (2.1)
exists if and only if det(IL −αz) has no roots inside the complex unit circle
|z| ≤ 1 (equivalently, the largest eigenvalue of α has an absolute magnitude
less than unity). This said, since all thinning probabilities αi,j must lie in
[0,1], one can show that an INARMA model cannot have any negative cor-
relations [Lund and Livsey (2016)]. In this way, INARMA models are not
as flexible as ARMA models.

Recently, negatively correlated count series have been investigated in
the literature. Kachour and Yao (2009) achieve negative autocorrelation by
rounding solutions to continuous Gaussian ARMA equations. For example,
the univariate (multivariate extensions are straightforward) rounded integer
autoregressive model of order p obeys

Yt =

⟨
µ+

p∑
j=1

ϕjYt−j

⟩
+ ϵt,

1Many authors use the term “long memory” when referring to LRD.
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where ⟨x⟩ rounds x to its nearest integer (round down should there be two
nearest integers), µ is a location parameter, ϕ1, . . . , ϕp are autoregressive
coefficients, and {ϵt} is count-valued IID noise. While such series can have
negative autocorrelations, this method, due to the rounding, makes it diffi-
cult to produce a pre-specified marginal distribution. The ability for a user
to select the marginal distribution can be important; for example, Poisson
marginal distributions for the hurricane counts will be sought.

Cui and Lund (2009) use a renewal/point process based approach to de-
vise univariate count time series models with negative autocorrelations.
There, a renewal sequence is used to generate a correlated but stationary se-
quence of zeros and ones. IID copies of these correlated binary processes are
then superpositioned akin to Blight (1989) to produce the marginal distri-
bution sought. While renewal methods produce very flexible autocovariance
structures in one dimension, they fail in two or more dimensions: in bivariate
renewal processes, the item number in use at a large time t is unlikely to
be the same for each component. Since different components are typically
assumed independent in renewal processes, such methods will produce inde-
pendent components. While Lund and Livsey (2016) discuss this issue and
show how to bypass it, the fixes are unwieldy.

Other count time series methods have been devised; e.g., GLARMA series
[Dunsmuir (2015)], state-space approaches [Davis and Dunsmuir (2015)],
and hidden Markov techniques [MacDonald and Zucchini (2015)]. See also
Barndorff-Nielsen et al. (2014) and Kerss, Leonenko and Sikorskii (2014).
These models all have a drawback that precludes them for our use — ei-
ther a fixed marginal distribution is difficult to achieve or the model cannot
produce negative correlations or LRD.

2.2. Long-range dependent models. Univariate LRD models have at-
tracted attention across a broad spectrum of scientific disciplines such as
finance, economics, computer networks, physics, etc. In the climate sciences,
the existence of long-range dependence and scaling phenomena has been in-
tensely debated. In a celebrated work, Hasselmann (1976) advocates that
climatic dynamics can often be adequately described by AR(1) processes.
This view was challenged in a series of articles reviewed in Mudelsee (2013)
that claim that temperatures follow a universal power law, and hence should
have LRD features. Varostsos and Efststhiou (2013) examine long memory
in tropical cyclone counts (not severe hurricanes); Yuan, Fu and Liu (2014)
assert satisfactory performance of a fractionally integrated LRD model in
describing Northern Hemisphere temperature anomalies and Pacific decadal
oscillations.
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Although multivariate LRD studies are sparser than their scalar counter-
parts, modelers have shown a recent growing interest in them. An intuitive
definition of multivariate LRD extends the univariate non-summability char-
acterization: a multivariate stationary series {Yt} is said to be LRD if

(2.2)

∞∑
h=−∞

||Cov(Yt,Yt+h)|| = ∞,

where ||A|| denotes the Frobenius norm of the matrix A. Other definitions
of multivariate LRD are possible (see Kechagias and Pipiras (2015) for a de-
tailed treatment on the subject). The series is short-range dependent (SRD)
if the autocovariances are summable in (2.2). Little has been done on LRD
count series; Quoreshi (2014) and Lund, Holan and Livsey (2015) are two
recent exceptions, although these are univariate works.

Vector autoregressive fractionally integrated moving average (VARFIMA)
series will be used to construct our count time series model; these are bi-
variate extensions of the celebrated ARFIMA model class, which have been
extensively studied and used in applications [Park and Willinger (2000);
Robinson (2003); Doukhan, Oppenheim and Taqqu (2003); Palma (2007);
Giraitis, Koul and Surgailis (2012); Beran et al. (2013); Pipiras and Taqqu
(2016)]. The VARFIMA model can capture both LRD and SRD. Moreover,
its autocovariance can often be expressed in a closed form that facilitates
computations and statistical inference.

3. The Severe Hurricane Data. Figure 1 depicts the annual num-
ber of major hurricanes (Saffir-Simpson Category 3 and above) recorded
in the North Atlantic and North Pacific Basins since 1967. Our data com-
mences in 1967 as problems exist in the Pacific record before this time (in
pre-satellite years, storms could form over open ocean waters and not be
detected). We omit 1966, the first year of satellite era, from our analysis
due to the decommission of satellite ESSA-1 amidst the Pacific hurricane
season. Saffir-Simpson Category 3+ storms have wind speeds of 111 mph or
more at some time during the storm’s lifetime. The peak wind speed for each
storm is used as a measure of the storm’s severity; other severity measures
involving duration and sustained windspeed thresholds are possible.

Marginally, the two component series are roughly Poisson distributed
(there is a slight amount of over-dispersion). Elaborating, from 1967–2015,
the sample means and standard deviations of the annual counts are

ȳAtlantic = 2.31 ȳPacific = 3.10
s2Atlantic = 2.97 s2Pacific = 5.76.
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Fig 1: Annual number of Saffir-Simpson category 3 and stronger hurricanes
in the North Pacific and North Atlantic Oceans.

The Atlantic major hurricane counts handily pass all Poisson diagnostic
checks: a chi-squared goodness-of-fit test with separate bins for the counts
0, 1, 2, . . . , 7 and a bin for counts ≥ 8 produced a critical value of 13.00 with
7 degrees of freedom – a p-value of 0.232. For the Pacific series, the same
test gives a p-value between 0.05 and 0.01, regardless of the binning choices.
Most of the Pacific’s Poisson departures is attributed to large counts. While
other distributions allowing for over-dispersion and heavier tails are worth
consideration (e.g., negative binomial, generalized Poisson), we proceed with
a Poisson marginal distribution as roughly reasonable and illustrative.

Figure 2 shows the sample autocorrelation functions (blue dashed lines)
for the Atlantic and Pacific series (top plots) and the sample cross-correlation
function (blue dashed line) with the Atlantic Basin leading the Pacific Basin
(bottom plot). Pointwise 95% confidence bands for white noise are included.
The Atlantic counts are close to white noise; the Pacific counts less so, but
still are not heavily correlated. The sample correlation between components
(this is a lag zero cross-correlation) is −0.295, hinting that active North
Atlantic seasons are typically accompanied by inactive North Pacific seasons
(and vice versa).

4. A Multivariate Poisson Count Time Series Model. This sec-
tion constructs a multivariate count time series model with Poisson marginal
distributions that allows for negative correlations and LRD. For presenta-
tion ease, we focus on the bivariate case and construct the model in four
steps. We begin with a stationary bivariate Gaussian series.

Step 1: Start with a bivariate Gaussian series.
Let {Xt}t∈Z = {(X1,t, X2,t)

′}t∈Z be a bivariate, second-order stationary
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Fig 2: Sample (dashed lines) and theoretical (solid lines) auto-correlation
functions (top plots) and cross-correlation function (bottom plot) of major
hurricane counts in the Atlantic and Pacific Basins. The theoretical auto-
and cross-correlation functions are computed using (4.8)–(4.9) with param-
eter values from Table 2. See Section 7 for more details.

time series with E[Xt] = 0 and lag-h autocovariance matrix

(4.1) ΓX(h) = E
[
XtX

′
t+h

]
=

(
γ1,1(h) γ1,2(h)
γ2,1(h) γ2,2(h)

)
.

We suppose that Xt follows a bivariate Gaussian distribution for each fixed
t, i.e.,

(4.2) Xt ∼ N2

((
0
0

)
,

(
1 ρ
ρ 1

))
,

where ρ = γ1,2(0) = γ2,1(0). The unit marginal variances imply that the
autocorrelation function of {Xt} satisfies

(4.3) Corr(Xi,t, Xj,t+h) := ρi,j(h) = γi,j(h), i, j = 1, 2, h ∈ Z.
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At this point, no further assumptions are placed on ΓX(h) as h → ∞; how-
ever, later in this section, a bivariate parametric model for {Xt} is posited
that can capture both short- and long-range dependent dynamics.

Step 2: Place the components of the Gaussian series into categories.
Let {St}t∈Z be a bivariate series, whose individual components bookkeep

the positive/negative signs of the components in {Xt}:

(4.4) St =

(
S1,t

S2,t

)
=

(
1{X1,t>0}
1{X2,t>0}

)
,

where 1A is the indicator of the event A. Lemma 4.1 below shows that
{St}t∈Z is stationary and identifies its mean and autocovariance function
ΓS(h) = E[StS

′
t+h]− E[St]E[St+h]

′.

Lemma 4.1. The series {St}t∈Z is stationary with mean E[St] =
(1/2, 1/2)′ and lag-h autocovariance matrix

(4.5) ΓS(h) =
1

2π

(
arcsin(ρ1,1(h)) arcsin(ρ1,2(h))
arcsin(ρ2,1(h)) arcsin(ρ2,2(h))

)
,

where ρi,j(h), i, j = 1, 2, h ∈ Z, are as in (4.3).

Lemma 4.1 is proven in the Appendix. Several remarks are in order.
First, note that arcsin(x) < 0 if and only if −1 ≤ x < 0. Hence,
the sign of the auto/cross-correlations of the component series {S1,t} and
{S2,t} is determined by the sign of the auto/cross-correlation functions of
{X1,t} and {X2,t}, respectively. Therefore, {St} can have negative auto-
and cross-correlations. Second, since | arcsin(x)| ≥ |x| for x ∈ [−1, 1],
| arcsin(ρi,j(h))| ≥ |ρi,j(h)|, implying that if ΓX satisfies (2.2), then so will
ΓS. In other words, long memory features of {Xt} will be passed on to
{St}. Finally, observe that for {Si,t} to be LRD in the univariate sense, it is
sufficient to have {Xi,t} LRD in the univariate sense for i = 1, 2.

Step 3: Superimpose IID copies of {St}t∈Z.
Let {S(k)

t }∞k=1 = {(S(k)
1,t , S

(k)
2,t )

′}∞k=1 be a sequence of IID replicates of
the bivariate binary process {St}t∈Z. To obtain Poisson marginal distribu-
tions, we will superimpose these binary processes as in Blight (1989) and
Cui and Lund (2009). More specifically, consider the bivariate count series

(4.6) Yt =

(
Y1,t
Y2,t

)
=

( ∑N1,t

k=1 S
(k)
1,t∑N2,t

k=1 S
(k)
2,t

)
, t ∈ Z,
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where for each i = 1, 2 and t ∈ Z,

(4.7) Ni,t ∼ Poisson(λi),

for some λi > 0. We also assume that the processes {N1,t} and {N2,t} consist
of independent variables, are mutually independent and are also indepen-

dent of the series {S(k)
t }, k = 0, 1, 2, . . .. The components Y1,t and Y2,t are

Poisson random sums of Bernoulli(1/2) variables; hence, they have Poisson
distributions with means λ1/2 and λ2/2, respectively.

In Proposition 4.1 below, {Yt} is shown to be stationary and its mean and
autocovariance function are derived. The autocovariance function involves
the random variable W = M1−M2, where M1 and M2 are independent Pois-
son random variables with means λ1 and λ2, respectively. In fact, W follows
the so-called Skellam(λ1, λ2) distribution [Skellam (1946)], whose cumula-
tive distribution function (CDF) FW (·;λ1, λ2) can be computed accurately
and efficiently.

Proposition 4.1. The series {Yt}t∈Z is stationary with mean E[Yt] =
(λ1/2, λ2/2)

′ and lag-h autocovariance matrix

(4.8) ΓY(h) =
1

2π

(
c1,1 arcsin(ρ1,1(h)) c1,2 arcsin(ρ1,2(h))
c2,1 arcsin(ρ2,1(h)) c2,2 arcsin(ρ2,2(h))

)
,

where ρi,j(h), h ∈ Z, i, j = 1, 2, are as in (4.3) and

(4.9) ci,j =
{ 2λi, i = j, h = 0,

λiFW (−1;λ1, λ2) + λj [1− FW (1;λ1, λ2)], otherwise,

and W has the Skellam(λ1, λ2) distribution with CDF FW (·;λ1, λ2).

The discussion following (4.5) applies here and shows that LRD in
{Xt}t∈Z will be inherited in {Yt}t∈Z. Relation (4.8) will aid statistical in-
ference, our Section 5 objective.

Step 4: Select a parametric model for {Xt}t∈Z.
When d1, d2 ∈ (−1/2, 1/2), set D = diag(d1, d2) and let Φ(z) and Θ(z)

be the usual autoregressive and moving-average polynomials of orders p and
q; viz.,

Φ(z) = I2 −Φ1z − · · · −Φpz
p, Θ(z) = I2 +Θ1z + · · ·+Θqz

q,

where I2 is the 2 × 2 identity matrix and Φi, i = 1, . . . , p, Θj , j = 1, . . . , q,
are 2 × 2 matrices. Let {ηt}t∈Z = {(η1,t, η2,t)′}t∈Z be a bivariate Gaussian
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white noise series with mean E[ηt] ≡ 0 and covariance matrix E[ηtη
′
t] =

Σ = (σi,j)i,j=1,2. Recall that the fractional differencing/integration operator
(I − B)d, where I = B0 and B denote the identity and backshift operator
respectively, is defined through the Taylor series

(I −B)d =

∞∑
k=0

bkB
k, with bk =

Γ(k + 1)

Γ(d)Γ(k + d)
, k = 0, 1, . . . ,

for any d ∈ (−1/2, 1/2) (see, for example, Beran et al., 2013;
Pipiras and Taqqu, 2016).

Now suppose that {Xt} of Step 1 is a VARFIMA(p,D, q) series satisfying

(4.10) Φ(B)(I −B)DXt = Θ(B)ηt,

where the operator (I −B)D is understood to be

(I −B)D =

(
(I −B)d1 0

0 (I −B)d2

)
.

The parameters d1 and d2 govern the decay rate of the autocovariances of
{Xt} to zero.

Remark 4.1. When p = q = 0, the components of the lag-h autocovari-
ance matrix ΓX(h) of a VARFIMA(0,D, 0) series are
(4.11)

γi,j(h) = σi,j
(−1)hΓ(1− di − dj)

Γ(1− di + h)Γ(1− dj − h)
∼ κi,jh

di+dj−1, as h → ∞,

for i, j = 1, 2 and for some constants κi,j .
2 Equation (4.11) illuminates the

role of the LRD parameters: if d1, d2 ∈ (0, 1/2), the power-law decay in
(4.11) implies that {Xt} has LRD. When d1, d2 ∈ (−1/2, 0), the left-hand
side of (2.2) is finite and the series exhibits a special type of SRD called
anti-persistence. When di = 0 for i = 1 or 2, γi,i(h) = 0 for h > 0, implying
that the corresponding component series {Xi,t} is white noise. Finally, the
asymptotic relation in (4.11) holds for any p, q for suitable constants κi,j .

Remark 4.2. When p = 0 and q ≥ 1, ΓX(h) can still be efficiently cal-
culated (see Proposition 3.1 in Kechagias and Pipiras (2016) with c = 0).
When p = 1, explicit expressions for ΓX(h) are not known, but autocovari-
ances can be numerically computed up to any desired accuracy; however,
an additional assumption on the AR polynomial Φ(B) is needed (all of its
eigenvalues need to be positive; Sela, 2010). Finally, computing ΓX(h) when
p ≥ 2 is not straightforward. As such, we focus on models with p = 0, 1.

2For two sequences {an}n∈N and {bn}n∈N, an ∼ bn stands for an/bn → 1 as n → ∞.
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Remark 4.3. The white noise series {ηt} must meet certain criteria for
{Xt} in (4.10) to satisfy (4.2). The zero mean and Gaussian distribution of
{Xt} follow directly from the zero mean and Gaussian distribution of {ηt}.
However, the structure of the variance matrix in (4.2) implies that only the
nondiagonal terms in Σ are free parameters. When p = q = 0, the variance
structure is achieved by setting γ1,1(0) = γ2,2(0) = 1, and γ1,2(0) = ρ in
the first equality of (4.11), and then solving for σ1,1, σ2,2 and σ1,2. The same
technique can be used when p = 1 or q = 1; unfortunately, in these cases, the
solution of the linear system is not necessarily unique, and in fact may not
even be a positive definite matrix. This issue is revisited at the end of Section
5. In particular, the cross-correlation ρ will be used as a free parameter in
the estimation procedure below.

5. Inference. This section puts forth a quasi-maximum likelihood esti-
mation (QMLE) method for the model in Section 4. We consider underlying
VARFIMA(p,D, q) series {Xt} satisfying (4.2) and the orders (p, q) = (0, 0),
(p, q) = (0, 1) and (p, q) = (1, 0). Let ξ contain all model parameters; these
include the long memory parameters d1 and d2, the Poisson means λ1 and
λ2, the cross-correlation ρ instead of the parameters of Σ (see Remark 4.3)
and all parameters in Φ and Θ.

The exact likelihood structure of the count series data {Yt}t=1,...,T , where
T is the sample size, has often proven to be intractable [Fokianos and Kedem
(2003); Davis et al. (2015)]. Nonetheless, analogous to ordinary time series
theory, a quasi log-likelihood can be devised from the model’s autocovariance
function. Using the so-called multivariate Durbin-Levinson (DL) or Innova-
tions algorithm [Brockwell and Davis (2009)], this quasi log-likelihood has
the form

(5.1) L(ξ) ∝ −1

2

T∑
t=1

log |Vt−1| −
1

2

T∑
t=1

(Yt − Ŷt)
′V−1

t−1(Yt − Ŷt),

where Ŷt := E[Yt|1,Y1, . . . ,Yt−1] is the best linear one-step-ahead pre-
dictor of Yt from a constant and a process history (Ŷ1 = E[Y1]) and
Vt−1 := E[(Yt − Ŷt)(Yt − Ŷt)

′] is the corresponding mean squared er-
ror. These quantities can be recursively obtained from the multivariate DL
or Innovations algorithms. The computational complexity of the algorithms
is O(T 2); however, the form in (5.1) conveniently bypasses inversion of a
2T × 2T covariance matrix.

The QMLE parameter estimates are

(5.2) ξ̂ = argmax
ξ∈S

L(ξ),
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where the k−dimensional (k = 5+ 4p+4q) parameter space S is defined as

S = {ξ ∈ Rk : −1/2 < d1, d2 < 1/2, λ1, λ2 > 0, −1 < ρ < 1}.

The estimates ξ̂ do not have a closed form, but can be computed numerically
from a quasi-Newton algorithm. This algorithm is available in the NLPQN
function of SAS/IML, which is the software used in Sections 6 and 7. More-
over, using the NLPFDD function we computed the inverse Hessian of the
likelihood function which we used to obtain confidence intervals.

We conclude this section with some observations about S. First, in view
of Remark 4.1, it is important to allow the parameters d1, d2 to take negative
values; optimization with d1, d2 ∈ (0, 1/2) may yield artificial LRD in the
sense that positive d1 or d2 are obtained due to parameter constraints and
not because of the underlying LRD. Second, no constraints are imposed on
the entries of Φ1 or Θ1 except the following: in numerical implementation of
(5.2), we set L(ξ) = −∞ if Φ1 or Θ1 have any eigenvalues whose absolute
modulus exceeds unity. This condition is equivalent to requiring that all roots
of Φ(z) and Θ(z) lie outside of the complex unit circle and is a standard as-
sumption guaranteeing that a causal and invertible solution to the VARMA
difference equation exists [Lütkepohl (2005)]. Candidate maximizers of ξ
that violate this constraint are assigned a small likelihood to ensure that
estimators are causal and invertible. Finally, the restrictions on Σ discussed
in Remark 4.3 cause issues for VARFIMA(0,D, 1) and VARFIMA(1,D, 0)
models, where autocovariance functions are more complex than those in the
simpler VARFIMA(0,D, 0) model. In these cases, one can still compute the
parameters σ1,1, σ1,2, and σ2,2 that ensure marginal unit variances and a
prescribed correlation ρ for {Yt} by solving a linear system whose coef-
ficients are nonlinear functions of d1, d2, ρ,Φ and Θ. After experimenting
with several parameter schemes for d1, d2, ρ,Φ and Θ, these systems were
found to always have unique solutions. However, these solutions did not al-
ways lead to a positive definite estimate of Σ. We dealt with such candidate
maximizers of L(ξ) by again assigning them a log-likelihood value of −∞.

6. Simulation Study. This section fits the model of Section 4 to the
simulated bivariate count data via the QMLE method of the last section. The
VARFIMA orders (0,D, 0), (0,D, 1), and (1,D, 0) are considered. For each
model, 100 series were simulated with T = 200, 400 and several VARFIMA
parameter values. To generate the underlying Gaussian series, the fast and
exact synthesis algorithm of Helgason, Pipiras and Abry (2011) is used. The
steps in Section 4 are followed to generate the count series.

Table 1 shows the median bias (MB) and median absolute deviation
(MAD) for the estimates obtained when d1 = 0.3, d2 = 0.2, λ1 = 3,



14

λ2 = 2 for all columns, ρ = 0.45, −0.9 for columns (0, 0)1 and (0, 0)2, respec-
tively, Φ1,1 = 0.4, Φ1,2 = 0.1, Φ2,1 = 0.3, Φ2,2 = 0.6 for column (1, 0) and
Θ1,1 = 0.1, Θ1,2 = −0.6, Θ2,1 = 0.2, and Θ2,2 = 0.8 for column (0, 1). Over-
all, the QMLE method performs very well in most cases, even though the
sample sizes used here are considered small/medium in the LRD literature.

Most MBs and MADs decrease with increasing sample size. An exception
is the MBs for some parameters in models with SRD components, especially
those in the (1, 0) column. This is attributed to the negative definiteness
issue discussed at the end of Section 5. Nevertheless, all MBs and MADs did
decrease when the sample size T = 1000 was considered. Other parameter
schemes were experimented with and produced similarly good results, but
are not shown here for brevity’s sake.

(p, q) (0, 0)1 (0, 0)2 (1, 0) (0, 1)

T 200 400 200 400 200 400 200 400

d1
−0.011 −0.010 −0.013 −0.024 −0.029 −0.039 0.059 0.069
0.082 0.059 0.075 0.061 0.138 0.107 0.057 0.038

d2
−0.026 0.009 −0.003 0.010 −0.019 −0.190 0.071 0.085
0.093 0.065 0.093 0.074 0.183 0.179 0.070 0.047

λ1
−0.046 −0.021 0.018 −0.028 −0.049 −0.065 −0.024 −0.013
0.273 0.229 0.320 0.214 0.309 0.338 0.231 0.199

λ2
0.029 0.023 −0.019 0.017 −0.077 −0.035 −0.023 0.010
0.157 0.125 0.210 0.171 0.228 0.165 0.156 0.149

ρ
0.072 0.045 0.001 −0.024 −0.002 0.042 0.060 −0.011
0.218 0.155 0.077 0.050 0.196 0.163 0.110 0.050

Φ1,1/Θ1,1
0.069 0.248 −0.004 −0.017
0.243 0.267 0.021 0.023

Φ1,2/Θ1,2
0.017 −0.090 0.165 0.145
0.241 0.178 0.085 0.086

Φ2,1/Θ2,1
−0.023 −0.071 0.130 0.133
0.158 0.168 0.069 0.047

Φ2,2/Θ2,2
0.052 0.088 0.029 0.032
0.148 0.140 0.020 0.022

Table 1
Median bias (top entries of each cell) and median absolute deviation (bottom entries of
each cell) of estimated parameters for the three models. The true parameter values are
d1 = 0.3, d2 = 0.2, λ1 = 3, λ2 = 2 for all columns, ρ = 0.45,−0.9 for columns (0, 0)1 and
(0, 0)2 respectively, Φ1,1 = 0.4,Φ1,2 = 0.1, Φ2,1 = 0.3, Φ2,2 = 0.6 for column (1, 0) and

Θ1,1 = 0.1,Θ1,2 = −0.6, Θ2,1 = 0.2,Θ2,2 = 0.8 for column (0, 1).

The boxplots in Figure 3 provide a distributional view of the parameter
estimates from columns (0, 0)1, (0, 1), and (1, 0) of Table 1 for T = 400. The
dashed blue lines demarcate the true parameter values, while red lines show
medians. The boxplots for estimates of λ1 and λ2 are centered at zero by
subtracting the true parameter value, providing a uniform presentation scale.
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Fig 3: Boxplots of the estimates from columns (0, 0)1 (left box), (0, 1) (middle box)

and (1, 0) (right box) of Table 1 for T = 400. The dashed blue lines correspond to

the true parameter values, while the solid red lines are the medians.

Finally, when experimenting with larger sample sizes, the symmetry/outliers
in these boxplots increased/decreased significantly.

7. Hurricane Data. Table 2 displays parameter estimates and the cor-
responding AIC and BIC scores obtained by fitting the bivariate count
model of Section 4 with the underlying Gaussian VARFIMA(0,D, 0) and
VARFIMA(1,D, 0) dynamics to the hurricane count series. Here, subscripts
of unity refer to the Atlantic Basin, subscripts of two refer to the Pacific
Basin, and ϕi,j are the entries of the 2× 2 AR matrix Φ1.

Model d1 d2 λ1 λ2 ρ ϕ1,1 ϕ1,2 ϕ2,1 ϕ2,2 AIC BIC

(0,D, 0) 0.24 0.23 5.7 11.5 −0.96 239 249

(1,D, 0) −0.4 0.12 5.6 10.3 −0.70 0.88 0.26 −0.01 0.01 242 259

Table 2
Parameter estimates and corresponding AIC and BIC scores for the hurricane series for

VARFIMA (0,D, 0) and (1,D, 0) models.

The quasi-Newton algorithm converged for both models, but termina-
tion criteria differed. In the VARFIMA(1,D, 0) case, the maxima occurred
at the boundary of the feasible region (|Σ| < 0 for ρ < −0.7), while for
the VARFIMA(0,D, 0) model, all gradient values were < 10−5 at the max-
ima indicating that the maxima occurred at an interior point of S. The
VARFIMA(0,D, 1) and VARFIMA(0,D, 0) models produced almost identi-
cal estimates, but the VARFIMA(0,D, 1) model had a negligible increase in
log-likelihood; hence, we omit listing VARFIMA(0,D, 1) results in the ta-
ble. For all models investigated, multiple starting points of the parameters
were investigated to ensure globally optimal estimators were found in the



16

step and search algorithm. All estimated LRD parameters are between 0
and 1/2, except for the Atlantic series under the VARFIMA(1,D, 0) model,
which is −0.4. In this case, the dependence in the series is captured by the
AR coefficients ϕ̂1,1 and ϕ̂1,2 (this is a common phenomenon in estimation
of Gaussian VARFIMA(1,D, 0) series with a small sample size, especially
when one of the AR parameters is significantly greater than zero).

As the AIC and BIC scores are smallest for the VARFIMA(0,D, 0) fit,
confidence intervals for the parameters of this model will be reported.
Standard errors were obtained from the usual second derivative of the
quasi log-likelihood function. First, a 90% confidence interval (CI) for ρ
is [−1.000,−0.59]. Hence, ρ is decisively negative and the negative correla-
tion between basin counts appears real. Substituting the VARFIMA(0,D, 0)
model estimates into (4.8)–(4.9) yields a lag zero cross-correlation of −0.28,
which closely matches the sample cross-correlation of −0.295. Second, 90%
CIs for the LRD parameters are [−0.095, 0.50] for the Atlantic Basin and
[−0.235, 0.50] for the Pacific Basin. As both intervals contain zero, long
memory cannot be definitively declared in either basin, despite the positive
estimates of the LRD parameters. Of course, wide intervals are expected
with only 49 years of data; a few years of additional data may change this
conclusion, especially for the Atlantic Basin, which was a close call. Finally,
the Poisson parameters have 90% CIs of [3.8, 7.61] for the Atlantic Basin and
[7.21, 15.82] for the Pacific Basin. Recall that the mean of the ith component
series is λi/2 for i = 1, 2. For feel, the auto- and cross-correlations of the
fitted VARFIMA(0,D, 0) (green solid lines) and VARFIMA(1,D, 0) models
(red dotted lines) are plotted together with the sample auto- and cross-
correlations (blue dashed lines) in Figure 2 — no radical disagreements are
seen.

Finally, Gaussian VARFIMA(0,D, 0) and VARFIMA(1,D, 0) models
were fitted to wind speeds of tropical cyclones (recall that to be classified
as a category 3 or greater hurricane, a tropical cyclone must have a wind
speed of 111 mph or more) via the SAS/ETS VARMAX procedure. More
specifically, accumulated cyclone energies (ACE) from 1971–2015 listed on
Wikipedia3 were analyzed. As in the count case, the VARFIMA(0,D, 0)
model had smaller AIC and BIC values. VARFIMA(0,D, 0) estimates were
d̂1 = 0.18, d̂2 = 0.24, and ρ̂ = −0.32. Corresponding p-values of 0.1135,
0.0447, and 0.0303 were achieved. We again see some evidence for nega-
tive dependence between the two basins; also, some long memory cannot be
discounted.

3https://en.wikipedia.org/wiki/Accumulated_cyclone_energy
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8. Conclusions. This paper introduced a novel stationary bivariate
count time series model with Poisson marginal distributions and possible
negative correlations and long-range dependence. Most count models devel-
oped to date do not allow combination of these three features. The model
was used to analyze annual severe hurricane counts in the North Atlantic
and Pacific Basins, series with important climatic ramifications that have
been intensely scrutinized by climatologists [Mooney (2007)]. We find a defi-
nite negative correlation between the two basins. While long memory cannot
be declared to any reasonable degree of statistical confidence, it cannot be
discounted with only 49 years of observations.

Modifications to our model are worth exploring. For example, nega-
tive binomial marginal distributions on the support set {0, 1, . . .} can be
produced with our tactics — one need only take {N1,t} and {N2,t} in
(4.6) to be independent processes, each themselves composed of IID neg-
ative binomial draws. Negative binomial marginal distributions are over-
dispersed and have been suggested as marginal distributions for hurri-
cane counts in Chu and Zhao (2004) and Villarini, Vecchi and Smith (2010).
Other marginal distributions are possible; these are currently being proba-
bilistically formalized in Jia and Lund (2016).

It may be desirable to include covariates in the analysis. One simple way
to do this is to allow the parameters λi to depend on the covariates via a
log link. While the resulting series will not be technically stationary, they
are natural variants of stationary series.

Appendix. The results stated in Section 4 are proven here.

Proof of Lemma 4.1: The zero mean part of the lemma follows directly
from symmetry of the normal distribution of Xt.

For the autocovariance part,

(8.1)
E[Si,tSj,t+h] = E[1{Xi,t>0}1{Xj,t+h>0}]

= P (Xi,t > 0, Xj,t+h > 0) .

The joint probability (8.1) is a quadrant probability of the bivariate nor-
mal distribution, which is known to be

(8.2) P (Xi,t > 0, Xj,t+h > 0) =
1

4
+

arcsin(ρi,j(h))

2π

(see, for example, Tong (2012)). Since E[Si,t]E[Sj,t] = 1/4, the proof is com-
plete. �
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Proof of Proposition 4.1: For the mean claim, E[
∑Ni,t

ℓ=1 S
(ℓ)
i,t |Ni,t = k] =

k/2 implies that

(8.3) E[Yi,t] = E

Ni,t∑
ℓ=1

S
(ℓ)
i,t

 = E

E
Ni,t∑

ℓ=1

S
(ℓ)
i,t

∣∣∣∣Ni,t

 =
1

2
E[Ni,t] =

λi

2
.

Next, let pi,j(h) = P (Ni,t = ni, Nj,t+h = nj) and condition on Ni,t and
Nj,t+h to get

E[Yi,tYj,t+h] = E

Ni,t∑
m=1

S
(m)
i,t

Nj,t+h∑
k=1

S
(k)
j,t+h

(8.4)

= E

E
Ni,t∑

m=1

Nj,t+h∑
k=1

S
(m)
i,t S

(k)
j,t+h

∣∣∣Ni,t, Nj,t+h


=

∞∑
ni,nj=0

E

[
ni∑

m=1

nj∑
k=1

S
(m)
i,t S

(k)
j,t+h

]
pi,j(h).

Using Lemma 4.1 and the independence of {S(m)
i,t } and {S(k)

j,t+h} when m ̸= k
we get

(8.5) E[S(m)
i,t S

(k)
j,t+h] =

{ 1
4 , m ̸= k,
1
4 +

arcsin(ρij(h))
2π , m = k.

Let Πi,j = ninj , Mi,j = min(ni, nj), and observe that the last row of (8.4)

has Mi,j different cross products of the form S
(m)
i,t S

(k)
j,t+h, where m = k and

Πi,j−Mi,j cross products of the same form when m ̸= k. Using (8.5) in (8.4)
provides
(8.6)

E[Yi,tYj,t+h] =
∞∑

ni,nj=0

[
Mi,j

(
1

4
+

arcsin(ρi,j(h))

2π

)
+

(Πi,j −Mi,j)

4

]
pi,j(h)

=

∞∑
ni,nj=0

[
Mi,j

arcsin(ρij(h))

2π
+

Πij

4

]
pi,j(h)

= 1
2π arcsin(ρi,j(h))E[min(Ni,t, Nj,t+h)] +

1
4E[Ni,tNj,t+h].

The expectation in the second term in the last row of (8.6) is readily calcu-
lated using the independence assumption under (4.7):

(8.7) E[Ni,tNj,t+h] =

{
λiλj , i ̸= j,

λi + λ2
i , h = 0, i = j.
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On the other hand, as shown in Lemma 8.1 below, the expectation of the
first term in the last row of (8.6) is

(8.8) E[min(Ni,t, Nj,t+h)] = λiFW (−1) + λj [1− FW (1)],

where FW is the CDF of a Skellam random variable with parameters λ1 and
λ2.

The autocovariance in (4.8) now follows from (8.3), (8.7), (8.8), and the
last row in (8.5). �

Lemma 8.1. Suppose that M1 and M2 are independent Poisson vari-
ables with mean E[Mi] = λi for i = 1, 2. Define W = M1 − M2 and
Y = min(M1,M2). Then

(8.9) E[Y ] = λ1FW (−1) + λ2[1− FW (1)],

where FW is the CDF of W .

Proof: Let Pi = P (mi;λi),mi = 0, 1, 2 . . ., λi > 0, be the probability
mass functions of Mi for i = 1, 2. Independence of M1 and M2 gives

(8.10)

E[Y ] =
∞∑

m1,m2=0

min(m1,m2)P (m1;λ1)P (m2;λ2)

=
∞∑

m2=0

m2∑
m1=0

m1P1P2 +
∞∑

m2=0

∞∑
m1=m2+1

m2P1P2.

Denote the first and second sums in the last row of (8.10) by κ1 and κ2,
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respectively, and note that

(8.11)

κ1 =
∞∑

m2=0

P2

m2∑
m1=0

m1P1

=
∞∑

m2=0

e−λ2
λm2
2

m2!

m2∑
m1=0

m1e
−λ1

λm1
1

m1!

= λ1

∞∑
m2=0

e−λ2
λm2
2

m2!

m2−1∑
m1=0

e−λ1
λm1
1

m1!

= λ1

∞∑
m2=0

e−λ2
λm2
2

m2!

(
1−

∞∑
m1=m2

e−λ1
λm1
1

m1!

)
= λ1

(
1−

∞∑
m2=0

e−λ2
λm2
2

m2!

∞∑
m1=m2

e−λ1
λm1
1

m1!

)

= λ1

1−
∞∑

m1,m2=0

1{m1≥m2}P1P2


= λ1[1− P (M1 ≥ M2)]
= λ1FW (−1).

Similar arguments give κ2 = λ2[1− FW (1)], thus proving (8.9). �
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